Documentation

Mathlib.Topology.Category.CompactlyGenerated

Compactly generated topological spaces #

This file defines the category of compactly generated topological spaces. These are spaces X such that a map f : X → Y is continuous whenever the composition S → X → Y is continuous for all compact Hausdorff spaces S mapping continuously to X.

TODO #

structure CompactlyGenerated :
Type (w + 1)

CompactlyGenerated.{u, w} is the type of u-compactly generated w-small topological spaces. This should always be used with explicit universe parameters.

Instances For
    def CompactlyGenerated.isoOfHomeo {X Y : CompactlyGenerated} (f : X.toTop ≃ₜ Y.toTop) :
    X Y

    Construct an isomorphism from a homeomorphism.

    Equations
    • CompactlyGenerated.isoOfHomeo f = { hom := { toFun := f, continuous_toFun := }, inv := { toFun := f.symm, continuous_toFun := }, hom_inv_id := , inv_hom_id := }
    Instances For
      @[simp]
      theorem CompactlyGenerated.isoOfHomeo_inv {X Y : CompactlyGenerated} (f : X.toTop ≃ₜ Y.toTop) :
      (CompactlyGenerated.isoOfHomeo f).inv = { toFun := f.symm, continuous_toFun := }
      @[simp]
      theorem CompactlyGenerated.isoOfHomeo_hom {X Y : CompactlyGenerated} (f : X.toTop ≃ₜ Y.toTop) :
      (CompactlyGenerated.isoOfHomeo f).hom = { toFun := f, continuous_toFun := }
      def CompactlyGenerated.homeoOfIso {X Y : CompactlyGenerated} (f : X Y) :
      X.toTop ≃ₜ Y.toTop

      Construct a homeomorphism from an isomorphism.

      Equations
      • CompactlyGenerated.homeoOfIso f = { toFun := f.hom, invFun := f.inv, left_inv := , right_inv := , continuous_toFun := , continuous_invFun := }
      Instances For
        def CompactlyGenerated.isoEquivHomeo {X Y : CompactlyGenerated} :
        (X Y) (X.toTop ≃ₜ Y.toTop)

        The equivalence between isomorphisms in CompactlyGenerated and homeomorphisms of topological spaces.

        Equations
        • CompactlyGenerated.isoEquivHomeo = { toFun := CompactlyGenerated.homeoOfIso, invFun := CompactlyGenerated.isoOfHomeo, left_inv := , right_inv := }
        Instances For
          @[simp]
          theorem CompactlyGenerated.isoEquivHomeo_apply {X Y : CompactlyGenerated} (f : X Y) :
          CompactlyGenerated.isoEquivHomeo f = CompactlyGenerated.homeoOfIso f
          @[simp]
          theorem CompactlyGenerated.isoEquivHomeo_symm_apply {X Y : CompactlyGenerated} (f : X.toTop ≃ₜ Y.toTop) :
          CompactlyGenerated.isoEquivHomeo.symm f = CompactlyGenerated.isoOfHomeo f