Documentation

Mathlib.Topology.Category.TopCat.Limits.Cofiltered

Cofiltered limits in the category of topological spaces #

Given a compatible collection of topological bases for the factors in a cofiltered limit which contain Set.univ and are closed under intersections, the induced naive collection of sets in the limit is, in fact, a topological basis.

theorem TopCat.isTopologicalBasis_cofiltered_limit {J : Type v} [CategoryTheory.SmallCategory J] [CategoryTheory.IsCofiltered J] (F : CategoryTheory.Functor J TopCat) (C : CategoryTheory.Limits.Cone F) (hC : CategoryTheory.Limits.IsLimit C) (T : (j : J) → Set (Set (F.obj j))) (hT : ∀ (j : J), TopologicalSpace.IsTopologicalBasis (T j)) (univ : ∀ (i : J), Set.univ T i) (inter : ∀ (i : J) (U1 U2 : Set (F.obj i)), U1 T iU2 T iU1 U2 T i) (compat : ∀ (i j : J) (f : i j), VT j, (F.map f) ⁻¹' V T i) :
TopologicalSpace.IsTopologicalBasis {U : Set C.pt | ∃ (j : J), VT j, U = (C.app j) ⁻¹' V}

Given a compatible collection of topological bases for the factors in a cofiltered limit which contain Set.univ and are closed under intersections, the induced naive collection of sets in the limit is, in fact, a topological basis.