Cofiltered limits in the category of topological spaces #
Given a compatible collection of topological bases for the factors in a cofiltered limit
which contain Set.univ
and are closed under intersections, the induced naive collection
of sets in the limit is, in fact, a topological basis.
theorem
TopCat.isTopologicalBasis_cofiltered_limit
{J : Type v}
[CategoryTheory.SmallCategory J]
[CategoryTheory.IsCofiltered J]
(F : CategoryTheory.Functor J TopCatMax)
(C : CategoryTheory.Limits.Cone F)
(hC : CategoryTheory.Limits.IsLimit C)
(T : (j : J) → Set (Set ↑(F.obj j)))
(hT : ∀ (j : J), TopologicalSpace.IsTopologicalBasis (T j))
(univ : ∀ (i : J), Set.univ ∈ T i)
(inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i)
(compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i)
:
TopologicalSpace.IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(C.π.app j) ⁻¹' V}
Given a compatible collection of topological bases for the factors in a cofiltered limit
which contain Set.univ
and are closed under intersections, the induced naive collection
of sets in the limit is, in fact, a topological basis.