Documentation

Mathlib.Topology.ContinuousFunction.Units

Units of continuous functions #

This file concerns itself with C(X, M)ˣ and C(X, Mˣ) when X is a topological space and M has some monoid structure compatible with its topology.

theorem ContinuousMap.addUnitsLift.proof_6 {X : Type u_2} {M : Type u_1} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : AddUnits C(X, M)) (x : X) :
↑(↑(-f) + f) x = 0 x
theorem ContinuousMap.addUnitsLift.proof_9 {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : AddUnits C(X, M)) :
(fun f => { val := ContinuousMap.mk fun x => ↑(f x), neg := ContinuousMap.mk fun x => ↑(-f x), val_neg := (_ : ((ContinuousMap.mk fun x => ↑(f x)) + ContinuousMap.mk fun x => ↑(-f x)) = 0), neg_val := (_ : ((ContinuousMap.mk fun x => ↑(-f x)) + ContinuousMap.mk fun x => ↑(f x)) = 0) }) ((fun f => ContinuousMap.mk fun x => { val := f x, neg := ↑(-f) x, val_neg := (_ : ↑(f + ↑(-f)) x = 0 x), neg_val := (_ : ↑(↑(-f) + f) x = 0 x) }) f) = f
theorem ContinuousMap.addUnitsLift.proof_4 {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : C(X, AddUnits M)) :
((ContinuousMap.mk fun x => ↑(-f x)) + ContinuousMap.mk fun x => ↑(f x)) = 0

Equivalence between continuous maps into the additive units of an additive monoid with continuous addition and the additive units of the additive monoid of continuous maps.

Instances For
    theorem ContinuousMap.addUnitsLift.proof_7 {X : Type u_2} {M : Type u_1} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : AddUnits C(X, M)) :
    Continuous fun x => { val := f x, neg := ↑(-f) x, val_neg := (_ : ↑(f + ↑(-f)) x = 0 x), neg_val := (_ : ↑(↑(-f) + f) x = 0 x) }
    theorem ContinuousMap.addUnitsLift.proof_2 {X : Type u_2} {M : Type u_1} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : C(X, AddUnits M)) :
    Continuous (AddUnits.val fun x => -f x)
    theorem ContinuousMap.addUnitsLift.proof_5 {X : Type u_2} {M : Type u_1} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : AddUnits C(X, M)) (x : X) :
    ↑(f + ↑(-f)) x = 0 x
    theorem ContinuousMap.addUnitsLift.proof_3 {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : C(X, AddUnits M)) :
    ((ContinuousMap.mk fun x => ↑(f x)) + ContinuousMap.mk fun x => ↑(-f x)) = 0
    theorem ContinuousMap.addUnitsLift.proof_1 {X : Type u_2} {M : Type u_1} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] (f : C(X, AddUnits M)) :
    Continuous (AddUnits.val fun x => f x)
    theorem ContinuousMap.addUnitsLift.proof_8 {X : Type u_2} {M : Type u_1} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : C(X, AddUnits M)) :
    (fun f => ContinuousMap.mk fun x => { val := f x, neg := ↑(-f) x, val_neg := (_ : ↑(f + ↑(-f)) x = 0 x), neg_val := (_ : ↑(↑(-f) + f) x = 0 x) }) ((fun f => { val := ContinuousMap.mk fun x => ↑(f x), neg := ContinuousMap.mk fun x => ↑(-f x), val_neg := (_ : ((ContinuousMap.mk fun x => ↑(f x)) + ContinuousMap.mk fun x => ↑(-f x)) = 0), neg_val := (_ : ((ContinuousMap.mk fun x => ↑(-f x)) + ContinuousMap.mk fun x => ↑(f x)) = 0) }) f) = f
    @[simp]
    theorem ContinuousMap.val_addUnitsLift_apply_apply {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : C(X, AddUnits M)) (x : X) :
    ↑(ContinuousMap.addUnitsLift f) x = ↑(f x)
    @[simp]
    theorem ContinuousMap.val_addUnitsLift_symm_apply_apply {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : AddUnits C(X, M)) (x : X) :
    ↑(↑(ContinuousMap.addUnitsLift.symm f) x) = f x
    @[simp]
    theorem ContinuousMap.val_unitsLift_apply_apply {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [Monoid M] [TopologicalSpace M] [ContinuousMul M] (f : C(X, Mˣ)) (x : X) :
    ↑(ContinuousMap.unitsLift f) x = ↑(f x)
    @[simp]
    theorem ContinuousMap.val_unitsLift_symm_apply_apply {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [Monoid M] [TopologicalSpace M] [ContinuousMul M] (f : C(X, M)ˣ) (x : X) :
    ↑(↑(ContinuousMap.unitsLift.symm f) x) = f x

    Equivalence between continuous maps into the units of a monoid with continuous multiplication and the units of the monoid of continuous maps.

    Instances For
      @[simp]
      theorem ContinuousMap.addUnitsLift_apply_neg_apply {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : C(X, AddUnits M)) (x : X) :
      ↑(-ContinuousMap.addUnitsLift f) x = ↑(-f x)
      @[simp]
      theorem ContinuousMap.unitsLift_apply_inv_apply {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [Monoid M] [TopologicalSpace M] [ContinuousMul M] (f : C(X, Mˣ)) (x : X) :
      (ContinuousMap.unitsLift f)⁻¹ x = (f x)⁻¹
      @[simp]
      theorem ContinuousMap.addUnitsLift_symm_apply_apply_neg' {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [AddMonoid M] [TopologicalSpace M] [ContinuousAdd M] (f : AddUnits C(X, M)) (x : X) :
      ↑(-↑(ContinuousMap.addUnitsLift.symm f) x) = ↑(-f) x
      @[simp]
      theorem ContinuousMap.unitsLift_symm_apply_apply_inv' {X : Type u_1} {M : Type u_2} [TopologicalSpace X] [Monoid M] [TopologicalSpace M] [ContinuousMul M] (f : C(X, M)ˣ) (x : X) :
      (↑(ContinuousMap.unitsLift.symm f) x)⁻¹ = f⁻¹ x
      theorem ContinuousMap.continuous_isUnit_unit {X : Type u_1} {R : Type u_3} [TopologicalSpace X] [NormedRing R] [CompleteSpace R] {f : C(X, R)} (h : ∀ (x : X), IsUnit (f x)) :
      Continuous fun x => IsUnit.unit (h x)
      @[simp]
      theorem ContinuousMap.unitsOfForallIsUnit_apply {X : Type u_1} {R : Type u_3} [TopologicalSpace X] [NormedRing R] [CompleteSpace R] {f : C(X, R)} (h : ∀ (x : X), IsUnit (f x)) (x : X) :
      noncomputable def ContinuousMap.unitsOfForallIsUnit {X : Type u_1} {R : Type u_3} [TopologicalSpace X] [NormedRing R] [CompleteSpace R] {f : C(X, R)} (h : ∀ (x : X), IsUnit (f x)) :

      Construct a continuous map into the group of units of a normed ring from a function into the normed ring and a proof that every element of the range is a unit.

      Instances For
        instance ContinuousMap.canLift {X : Type u_1} {R : Type u_3} [TopologicalSpace X] [NormedRing R] [CompleteSpace R] :
        CanLift C(X, R) C(X, Rˣ) (fun f => ContinuousMap.mk fun x => ↑(f x)) fun f => ∀ (x : X), IsUnit (f x)
        theorem ContinuousMap.isUnit_iff_forall_isUnit {X : Type u_1} {R : Type u_3} [TopologicalSpace X] [NormedRing R] [CompleteSpace R] (f : C(X, R)) :
        IsUnit f ∀ (x : X), IsUnit (f x)
        theorem ContinuousMap.isUnit_iff_forall_ne_zero {X : Type u_1} {𝕜 : Type u_4} [TopologicalSpace X] [NormedField 𝕜] [CompleteSpace 𝕜] (f : C(X, 𝕜)) :
        IsUnit f ∀ (x : X), f x 0
        theorem ContinuousMap.spectrum_eq_range {X : Type u_1} {𝕜 : Type u_4} [TopologicalSpace X] [NormedField 𝕜] [CompleteSpace 𝕜] (f : C(X, 𝕜)) :
        spectrum 𝕜 f = Set.range f