Documentation

Mathlib.Topology.Covering

Covering Maps #

This file defines covering maps.

Main definitions #

def IsEvenlyCovered {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (x : X) (I : Type u_3) [TopologicalSpace I] :

A point x : X is evenly covered by f : E → X if x has an evenly covered neighborhood.

Instances For
    noncomputable def IsEvenlyCovered.toTrivialization {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {x : X} {I : Type u_3} [TopologicalSpace I] (h : IsEvenlyCovered f x I) :
    Trivialization (↑(f ⁻¹' {x})) f

    If x is evenly covered by f, then we can construct a trivialization of f at x.

    Instances For
      theorem IsEvenlyCovered.mem_toTrivialization_baseSet {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {x : X} {I : Type u_3} [TopologicalSpace I] (h : IsEvenlyCovered f x I) :
      theorem IsEvenlyCovered.toTrivialization_apply {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {x : E} {I : Type u_3} [TopologicalSpace I] (h : IsEvenlyCovered f (f x) I) :
      (↑(IsEvenlyCovered.toTrivialization h) x).snd = { val := x, property := (_ : f x = f x) }
      theorem IsEvenlyCovered.continuousAt {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {x : E} {I : Type u_3} [TopologicalSpace I] (h : IsEvenlyCovered f (f x) I) :
      theorem IsEvenlyCovered.to_isEvenlyCovered_preimage {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {x : X} {I : Type u_3} [TopologicalSpace I] (h : IsEvenlyCovered f x I) :
      IsEvenlyCovered f x ↑(f ⁻¹' {x})
      def IsCoveringMapOn {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (s : Set X) :

      A covering map is a continuous function f : E → X with discrete fibers such that each point of X has an evenly covered neighborhood.

      Instances For
        theorem IsCoveringMapOn.mk {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (s : Set X) (F : XType u_3) [(x : X) → TopologicalSpace (F x)] [hF : ∀ (x : X), DiscreteTopology (F x)] (e : (x : X) → x sTrivialization (F x) f) (h : ∀ (x : X) (hx : x s), x (e x hx).baseSet) :
        theorem IsCoveringMapOn.continuousAt {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {s : Set X} (hf : IsCoveringMapOn f s) {x : E} (hx : f x s) :
        theorem IsCoveringMapOn.continuousOn {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {s : Set X} (hf : IsCoveringMapOn f s) :
        theorem IsCoveringMapOn.isLocallyHomeomorphOn {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {s : Set X} (hf : IsCoveringMapOn f s) :
        def IsCoveringMap {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) :

        A covering map is a continuous function f : E → X with discrete fibers such that each point of X has an evenly covered neighborhood.

        Instances For
          theorem IsCoveringMap.isCoveringMapOn {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsCoveringMap f) :
          IsCoveringMapOn f Set.univ
          theorem IsCoveringMap.mk {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] (f : EX) (F : XType u_3) [(x : X) → TopologicalSpace (F x)] [∀ (x : X), DiscreteTopology (F x)] (e : (x : X) → Trivialization (F x) f) (h : ∀ (x : X), x (e x).baseSet) :
          theorem IsCoveringMap.continuous {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsCoveringMap f) :
          theorem IsCoveringMap.isOpenMap {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsCoveringMap f) :
          theorem IsCoveringMap.quotientMap {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} (hf : IsCoveringMap f) (hf' : Function.Surjective f) :
          theorem IsFiberBundle.isCoveringMap {E : Type u_1} {X : Type u_2} [TopologicalSpace E] [TopologicalSpace X] {f : EX} {F : Type u_3} [TopologicalSpace F] [DiscreteTopology F] (hf : ∀ (x : X), e, x e.baseSet) :
          theorem FiberBundle.isCoveringMap {X : Type u_2} [TopologicalSpace X] {F : Type u_3} {E : XType u_4} [TopologicalSpace F] [DiscreteTopology F] [TopologicalSpace (Bundle.TotalSpace F E)] [(x : X) → TopologicalSpace (E x)] [FiberBundle F E] :
          IsCoveringMap Bundle.TotalSpace.proj