Covering Maps #
This file defines covering maps.
Main definitions #
IsEvenlyCovered f x I
: A pointx
is evenly covered byf : E → X
with fiberI
ifI
is discrete and there is aTrivialization
off
atx
with fiberI
.IsCoveringMap f
: A functionf : E → X
is a covering map if every pointx
is evenly covered byf
with fiberf ⁻¹' {x}
. The fibersf ⁻¹' {x}
must be discrete, but ifX
is not connected, then the fibersf ⁻¹' {x}
are not necessarily isomorphic. Also,f
is not assumed to be surjective, so the fibers are even allowed to be empty.
def
IsEvenlyCovered
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(x : X)
(I : Type u_3)
[TopologicalSpace I]
:
A point x : X
is evenly covered by f : E → X
if x
has an evenly covered neighborhood.
Instances For
noncomputable def
IsEvenlyCovered.toTrivialization
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : X}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f x I)
:
Trivialization (↑(f ⁻¹' {x})) f
If x
is evenly covered by f
, then we can construct a trivialization of f
at x
.
Instances For
theorem
IsEvenlyCovered.mem_toTrivialization_baseSet
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : X}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f x I)
:
x ∈ (IsEvenlyCovered.toTrivialization h).baseSet
theorem
IsEvenlyCovered.toTrivialization_apply
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : E}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f (f x) I)
:
(↑(IsEvenlyCovered.toTrivialization h) x).snd = { val := x, property := (_ : f x = f x) }
theorem
IsEvenlyCovered.continuousAt
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : E}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f (f x) I)
:
ContinuousAt f x
theorem
IsEvenlyCovered.to_isEvenlyCovered_preimage
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{x : X}
{I : Type u_3}
[TopologicalSpace I]
(h : IsEvenlyCovered f x I)
:
IsEvenlyCovered f x ↑(f ⁻¹' {x})
def
IsCoveringMapOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(s : Set X)
:
A covering map is a continuous function f : E → X
with discrete fibers such that each point
of X
has an evenly covered neighborhood.
Instances For
theorem
IsCoveringMapOn.mk
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(s : Set X)
(F : X → Type u_3)
[(x : X) → TopologicalSpace (F x)]
[hF : ∀ (x : X), DiscreteTopology (F x)]
(e : (x : X) → x ∈ s → Trivialization (F x) f)
(h : ∀ (x : X) (hx : x ∈ s), x ∈ (e x hx).baseSet)
:
IsCoveringMapOn f s
theorem
IsCoveringMapOn.continuousAt
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{s : Set X}
(hf : IsCoveringMapOn f s)
{x : E}
(hx : f x ∈ s)
:
ContinuousAt f x
theorem
IsCoveringMapOn.continuousOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{s : Set X}
(hf : IsCoveringMapOn f s)
:
ContinuousOn f (f ⁻¹' s)
theorem
IsCoveringMapOn.isLocallyHomeomorphOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{s : Set X}
(hf : IsCoveringMapOn f s)
:
IsLocallyHomeomorphOn f (f ⁻¹' s)
def
IsCoveringMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
:
A covering map is a continuous function f : E → X
with discrete fibers such that each point
of X
has an evenly covered neighborhood.
Instances For
theorem
isCoveringMap_iff_isCoveringMapOn_univ
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
:
IsCoveringMap f ↔ IsCoveringMapOn f Set.univ
theorem
IsCoveringMap.isCoveringMapOn
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
IsCoveringMapOn f Set.univ
theorem
IsCoveringMap.mk
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
(f : E → X)
(F : X → Type u_3)
[(x : X) → TopologicalSpace (F x)]
[∀ (x : X), DiscreteTopology (F x)]
(e : (x : X) → Trivialization (F x) f)
(h : ∀ (x : X), x ∈ (e x).baseSet)
:
theorem
IsCoveringMap.continuous
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.isLocallyHomeomorph
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.isOpenMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
:
theorem
IsCoveringMap.quotientMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
(hf : IsCoveringMap f)
(hf' : Function.Surjective f)
:
theorem
IsFiberBundle.isCoveringMap
{E : Type u_1}
{X : Type u_2}
[TopologicalSpace E]
[TopologicalSpace X]
{f : E → X}
{F : Type u_3}
[TopologicalSpace F]
[DiscreteTopology F]
(hf : ∀ (x : X), ∃ e, x ∈ e.baseSet)
:
theorem
FiberBundle.isCoveringMap
{X : Type u_2}
[TopologicalSpace X]
{F : Type u_3}
{E : X → Type u_4}
[TopologicalSpace F]
[DiscreteTopology F]
[TopologicalSpace (Bundle.TotalSpace F E)]
[(x : X) → TopologicalSpace (E x)]
[FiberBundle F E]
:
IsCoveringMap Bundle.TotalSpace.proj