Documentation

Mathlib.Topology.Instances.ENat

Topology on extended natural numbers #

Topology on ℕ∞.

Note: this is different from the EMetricSpace topology. The EMetricSpace topology has IsOpen {∞}, but all neighborhoods of in ℕ∞ contain infinite intervals.

Equations
@[simp]
theorem ENat.nhds_natCast (n : ) :
nhds n = pure n
@[simp]
theorem ENat.nhds_eq_pure {n : ℕ∞} (h : n ) :
nhds n = pure n
theorem ENat.isOpen_singleton {x : ℕ∞} (hx : x ) :
IsOpen {x}
theorem ENat.mem_nhds_iff {x : ℕ∞} {s : Set ℕ∞} (hx : x ) :
s nhds x x s
theorem ENat.mem_nhds_natCast_iff (n : ) {s : Set ℕ∞} :
s nhds n n s
theorem ENat.tendsto_nhds_top_iff_natCast_lt {α : Type u_1} {l : Filter α} {f : αℕ∞} :
Filter.Tendsto f l (nhds ) ∀ (n : ), ∀ᶠ (a : α) in l, n < f a
theorem ENat.continuousAt_sub {a : ℕ∞} {b : ℕ∞} (h : a b ) :
ContinuousAt (Function.uncurry fun (x1 x2 : ℕ∞) => x1 - x2) (a, b)
theorem Filter.Tendsto.enatSub {α : Type u_1} {l : Filter α} {f : αℕ∞} {g : αℕ∞} {a : ℕ∞} {b : ℕ∞} (hf : Filter.Tendsto f l (nhds a)) (hg : Filter.Tendsto g l (nhds b)) (h : a b ) :
Filter.Tendsto (fun (x : α) => f x - g x) l (nhds (a - b))
theorem ContinuousWithinAt.enatSub {X : Type u_1} [TopologicalSpace X] {f : Xℕ∞} {g : Xℕ∞} {s : Set X} {x : X} (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) (h : f x g x ) :
ContinuousWithinAt (fun (x : X) => f x - g x) s x
theorem ContinuousAt.enatSub {X : Type u_1} [TopologicalSpace X] {f : Xℕ∞} {g : Xℕ∞} {x : X} (hf : ContinuousAt f x) (hg : ContinuousAt g x) (h : f x g x ) :
ContinuousAt (fun (x : X) => f x - g x) x
theorem ContinuousOn.enatSub {X : Type u_1} [TopologicalSpace X] {f : Xℕ∞} {g : Xℕ∞} {s : Set X} (hf : ContinuousOn f s) (hg : ContinuousOn g s) (h : xs, f x g x ) :
ContinuousOn (fun (x : X) => f x - g x) s
theorem Continuous.enatSub {X : Type u_1} [TopologicalSpace X] {f : Xℕ∞} {g : Xℕ∞} (hf : Continuous f) (hg : Continuous g) (h : ∀ (x : X), f x g x ) :
Continuous fun (x : X) => f x - g x