Documentation

Mathlib.Topology.LocallyConstant.Algebra

Algebraic structure on locally constant functions #

This file puts algebraic structure (Group, AddGroup, etc) on the type of locally constant functions.

Equations
Equations
@[simp]
theorem LocallyConstant.coe_zero {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Zero Y] :
0 = 0
@[simp]
theorem LocallyConstant.coe_one {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [One Y] :
1 = 1
theorem LocallyConstant.zero_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Zero Y] (x : X) :
0 x = 0
theorem LocallyConstant.one_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [One Y] (x : X) :
1 x = 1
Equations
  • LocallyConstant.instNegLocallyConstant = { neg := fun (f : LocallyConstant X Y) => { toFun := -f, isLocallyConstant := } }
Equations
  • LocallyConstant.instInvLocallyConstant = { inv := fun (f : LocallyConstant X Y) => { toFun := (f)⁻¹, isLocallyConstant := } }
@[simp]
theorem LocallyConstant.coe_neg {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Neg Y] (f : LocallyConstant X Y) :
(-f) = -f
@[simp]
theorem LocallyConstant.coe_inv {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Inv Y] (f : LocallyConstant X Y) :
f⁻¹ = (f)⁻¹
theorem LocallyConstant.neg_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Neg Y] (f : LocallyConstant X Y) (x : X) :
(-f) x = -f x
theorem LocallyConstant.inv_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Inv Y] (f : LocallyConstant X Y) (x : X) :
f⁻¹ x = (f x)⁻¹
Equations
  • LocallyConstant.instAddLocallyConstant = { add := fun (f g : LocallyConstant X Y) => { toFun := f + g, isLocallyConstant := } }
Equations
  • LocallyConstant.instMulLocallyConstant = { mul := fun (f g : LocallyConstant X Y) => { toFun := f * g, isLocallyConstant := } }
@[simp]
theorem LocallyConstant.coe_add {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Add Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) :
(f + g) = f + g
@[simp]
theorem LocallyConstant.coe_mul {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Mul Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) :
(f * g) = f * g
theorem LocallyConstant.add_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Add Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) (x : X) :
(f + g) x = f x + g x
theorem LocallyConstant.mul_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Mul Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) (x : X) :
(f * g) x = f x * g x
Equations
theorem LocallyConstant.instAddZeroClassLocallyConstant.proof_3 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddZeroClass Y] :
∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
Equations

DFunLike.coe as an AddMonoidHom.

Equations
  • LocallyConstant.coeFnAddMonoidHom = { toZeroHom := { toFun := DFunLike.coe, map_zero' := }, map_add' := }
Instances For
    theorem LocallyConstant.coeFnAddMonoidHom.proof_2 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddZeroClass Y] :
    ∀ (x x_1 : LocallyConstant X Y), { toFun := DFunLike.coe, map_zero' := }.toFun (x + x_1) = { toFun := DFunLike.coe, map_zero' := }.toFun (x + x_1)
    @[simp]
    theorem LocallyConstant.coeFnMonoidHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [MulOneClass Y] :
    ∀ (a : LocallyConstant X Y) (a_1 : X), LocallyConstant.coeFnMonoidHom a a_1 = a a_1
    @[simp]
    theorem LocallyConstant.coeFnAddMonoidHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [AddZeroClass Y] :
    ∀ (a : LocallyConstant X Y) (a_1 : X), LocallyConstant.coeFnAddMonoidHom a a_1 = a a_1

    DFunLike.coe as a MonoidHom.

    Equations
    • LocallyConstant.coeFnMonoidHom = { toOneHom := { toFun := DFunLike.coe, map_one' := }, map_mul' := }
    Instances For
      theorem LocallyConstant.constAddMonoidHom.proof_2 {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [AddZeroClass Y] :
      ∀ (x x_1 : Y), { toFun := LocallyConstant.const X, map_zero' := }.toFun (x + x_1) = { toFun := LocallyConstant.const X, map_zero' := }.toFun (x + x_1)

      The constant-function embedding, as an additive monoid hom.

      Equations
      • LocallyConstant.constAddMonoidHom = { toZeroHom := { toFun := LocallyConstant.const X, map_zero' := }, map_add' := }
      Instances For
        @[simp]
        theorem LocallyConstant.constMonoidHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [MulOneClass Y] (y : Y) :
        LocallyConstant.constMonoidHom y = LocallyConstant.const X y
        @[simp]
        theorem LocallyConstant.constAddMonoidHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [AddZeroClass Y] (y : Y) :
        LocallyConstant.constAddMonoidHom y = LocallyConstant.const X y

        The constant-function embedding, as a multiplicative monoid hom.

        Equations
        • LocallyConstant.constMonoidHom = { toOneHom := { toFun := LocallyConstant.const X, map_one' := }, map_mul' := }
        Instances For
          Equations
          Equations
          noncomputable def LocallyConstant.charFn {X : Type u_1} (Y : Type u_2) [TopologicalSpace X] [MulZeroOneClass Y] {U : Set X} (hU : IsClopen U) :

          Characteristic functions are locally constant functions taking x : X to 1 if x ∈ U, where U is a clopen set, and 0 otherwise.

          Equations
          Instances For
            theorem LocallyConstant.charFn_eq_one {X : Type u_1} (Y : Type u_2) [TopologicalSpace X] [MulZeroOneClass Y] {U : Set X} [Nontrivial Y] (x : X) (hU : IsClopen U) :
            theorem LocallyConstant.charFn_eq_zero {X : Type u_1} (Y : Type u_2) [TopologicalSpace X] [MulZeroOneClass Y] {U : Set X} [Nontrivial Y] (x : X) (hU : IsClopen U) :
            (LocallyConstant.charFn Y hU) x = 0 xU
            theorem LocallyConstant.charFn_inj {X : Type u_1} (Y : Type u_2) [TopologicalSpace X] [MulZeroOneClass Y] {U : Set X} {V : Set X} [Nontrivial Y] (hU : IsClopen U) (hV : IsClopen V) (h : LocallyConstant.charFn Y hU = LocallyConstant.charFn Y hV) :
            U = V
            Equations
            • LocallyConstant.instSubLocallyConstant = { sub := fun (f g : LocallyConstant X Y) => { toFun := f - g, isLocallyConstant := } }
            Equations
            • LocallyConstant.instDivLocallyConstant = { div := fun (f g : LocallyConstant X Y) => { toFun := f / g, isLocallyConstant := } }
            theorem LocallyConstant.coe_sub {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Sub Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) :
            (f - g) = f - g
            theorem LocallyConstant.coe_div {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Div Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) :
            (f / g) = f / g
            theorem LocallyConstant.sub_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Sub Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) (x : X) :
            (f - g) x = f x - g x
            theorem LocallyConstant.div_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Div Y] (f : LocallyConstant X Y) (g : LocallyConstant X Y) (x : X) :
            (f / g) x = f x / g x
            theorem LocallyConstant.instAddSemigroupLocallyConstant.proof_2 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddSemigroup Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
            Equations
            Equations
            Equations
            Equations
            theorem LocallyConstant.instAddCommSemigroupLocallyConstant.proof_2 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommSemigroup Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
            Equations
            instance LocallyConstant.vadd {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {α : Type u_3} [VAdd α Y] :
            Equations
            instance LocallyConstant.smul {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {α : Type u_3} [SMul α Y] :
            Equations
            @[simp]
            theorem LocallyConstant.coe_vadd {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {R : Type u_4} [VAdd R Y] (r : R) (f : LocallyConstant X Y) :
            (r +ᵥ f) = r +ᵥ f
            @[simp]
            theorem LocallyConstant.coe_smul {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {R : Type u_4} [SMul R Y] (r : R) (f : LocallyConstant X Y) :
            (r f) = r f
            theorem LocallyConstant.vadd_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {R : Type u_4} [VAdd R Y] (r : R) (f : LocallyConstant X Y) (x : X) :
            (r +ᵥ f) x = r +ᵥ f x
            theorem LocallyConstant.smul_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {R : Type u_4} [SMul R Y] (r : R) (f : LocallyConstant X Y) (x : X) :
            (r f) x = r f x
            instance LocallyConstant.instPowLocallyConstant {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {α : Type u_3} [Pow Y α] :
            Equations
            theorem LocallyConstant.instAddMonoidLocallyConstant.proof_4 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddMonoid Y] :
            ∀ (x : LocallyConstant X Y) (x_1 : ), (x_1 x) = (x_1 x)
            Equations
            theorem LocallyConstant.instAddMonoidLocallyConstant.proof_3 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddMonoid Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
            Equations
            Equations
            Equations
            Equations
            theorem LocallyConstant.instAddCommMonoidLocallyConstant.proof_4 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommMonoid Y] :
            ∀ (x : LocallyConstant X Y) (x_1 : ), (x_1 x) = (x_1 x)
            theorem LocallyConstant.instAddCommMonoidLocallyConstant.proof_3 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommMonoid Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
            Equations
            Equations
            theorem LocallyConstant.instAddGroupLocallyConstant.proof_6 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddGroup Y] :
            ∀ (x : LocallyConstant X Y) (x_1 : ), (x_1 x) = (x_1 x)
            Equations
            theorem LocallyConstant.instAddGroupLocallyConstant.proof_5 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddGroup Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x - x_1) = (x - x_1)
            theorem LocallyConstant.instAddGroupLocallyConstant.proof_4 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddGroup Y] :
            ∀ (x : LocallyConstant X Y), (-x) = (-x)
            theorem LocallyConstant.instAddGroupLocallyConstant.proof_3 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddGroup Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
            theorem LocallyConstant.instAddGroupLocallyConstant.proof_7 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddGroup Y] :
            ∀ (x : LocallyConstant X Y) (x_1 : ), (x_1 x) = (x_1 x)
            Equations
            theorem LocallyConstant.instAddCommGroupLocallyConstant.proof_6 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommGroup Y] :
            ∀ (x : LocallyConstant X Y) (x_1 : ), (x_1 x) = (x_1 x)
            theorem LocallyConstant.instAddCommGroupLocallyConstant.proof_7 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommGroup Y] :
            ∀ (x : LocallyConstant X Y) (x_1 : ), (x_1 x) = (x_1 x)
            theorem LocallyConstant.instAddCommGroupLocallyConstant.proof_5 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommGroup Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x - x_1) = (x - x_1)
            Equations
            theorem LocallyConstant.instAddCommGroupLocallyConstant.proof_3 {X : Type u_2} {Y : Type u_1} [TopologicalSpace X] [AddCommGroup Y] :
            ∀ (x x_1 : LocallyConstant X Y), (x + x_1) = (x + x_1)
            Equations
            Equations
            Equations
            Equations
            Equations
            @[simp]
            theorem LocallyConstant.constRingHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [NonAssocSemiring Y] (y : Y) :
            LocallyConstant.constRingHom y = LocallyConstant.const X y

            The constant-function embedding, as a ring hom.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              Equations
              Equations
              Equations
              Equations
              Equations
              Equations
              • LocallyConstant.instRingLocallyConstant = Function.Injective.ring DFunLike.coe
              Equations
              Equations
              Equations
              Equations
              Equations
              • LocallyConstant.instModuleLocallyConstantInstAddCommMonoidLocallyConstant = Function.Injective.module R LocallyConstant.coeFnAddMonoidHom
              Equations
              @[simp]
              theorem LocallyConstant.coe_algebraMap {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {R : Type u_5} [CommSemiring R] [Semiring Y] [Algebra R Y] (r : R) :
              ((algebraMap R (LocallyConstant X Y)) r) = (algebraMap R (XY)) r
              @[simp]
              theorem LocallyConstant.coeFnRingHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Semiring Y] :
              ∀ (a : LocallyConstant X Y) (a_1 : X), LocallyConstant.coeFnRingHom a a_1 = a a_1

              DFunLike.coe as a RingHom.

              Equations
              • LocallyConstant.coeFnRingHom = let __spread.0 := LocallyConstant.coeFnAddMonoidHom; { toMonoidHom := LocallyConstant.coeFnMonoidHom, map_zero' := , map_add' := }
              Instances For
                @[simp]
                theorem LocallyConstant.coeFnₗ_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [Semiring R] [AddCommMonoid Y] [Module R Y] :
                ∀ (a : LocallyConstant X Y) (a_1 : X), (LocallyConstant.coeFnₗ R) a a_1 = a a_1
                def LocallyConstant.coeFnₗ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [Semiring R] [AddCommMonoid Y] [Module R Y] :

                DFunLike.coe as a linear map.

                Equations
                Instances For
                  @[simp]
                  theorem LocallyConstant.coeFnAlgHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [CommSemiring R] [Semiring Y] [Algebra R Y] :
                  ∀ (a : LocallyConstant X Y) (a_1 : X), (LocallyConstant.coeFnAlgHom R) a a_1 = a a_1
                  def LocallyConstant.coeFnAlgHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [CommSemiring R] [Semiring Y] [Algebra R Y] :

                  DFunLike.coe as an AlgHom.

                  Equations
                  Instances For

                    Evaluation as an AddMonoidHom

                    Equations
                    Instances For
                      @[simp]
                      theorem LocallyConstant.evalMonoidHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [MulOneClass Y] (x : X) :

                      Evaluation as a MonoidHom

                      Equations
                      Instances For
                        @[simp]
                        theorem LocallyConstant.evalₗ_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [Semiring R] [AddCommMonoid Y] [Module R Y] (x : X) :
                        ∀ (a : LocallyConstant X Y), (LocallyConstant.evalₗ R x) a = a x
                        def LocallyConstant.evalₗ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [Semiring R] [AddCommMonoid Y] [Module R Y] (x : X) :

                        Evaluation as a linear map

                        Equations
                        Instances For
                          @[simp]
                          theorem LocallyConstant.evalRingHom_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Semiring Y] (x : X) :
                          def LocallyConstant.evalRingHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [Semiring Y] (x : X) :

                          Evaluation as a RingHom

                          Equations
                          Instances For
                            @[simp]
                            theorem LocallyConstant.evalₐ_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [CommSemiring R] [Semiring Y] [Algebra R Y] (x : X) :
                            ∀ (a : LocallyConstant X Y), (LocallyConstant.evalₐ R x) a = a x
                            def LocallyConstant.evalₐ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] (R : Type u_6) [CommSemiring R] [Semiring Y] [Algebra R Y] (x : X) :

                            Evaluation as an AlgHom

                            Equations
                            Instances For
                              noncomputable def LocallyConstant.comapAddHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Add Z] (f : C(X, Y)) :

                              LocallyConstant.comap as an AddHom.

                              Equations
                              Instances For
                                theorem LocallyConstant.comapAddHom.proof_1 {X : Type u_3} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_1} [Add Z] (f : C(X, Y)) :
                                ∀ (x x_1 : LocallyConstant Y Z), LocallyConstant.comap f (x + x_1) = LocallyConstant.comap f (x + x_1)
                                noncomputable def LocallyConstant.comapMulHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Mul Z] (f : C(X, Y)) :

                                LocallyConstant.comap as a MulHom.

                                Equations
                                Instances For
                                  noncomputable def LocallyConstant.comapAddMonoidHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [AddZeroClass Z] (f : C(X, Y)) :

                                  LocallyConstant.comap as an AddMonoidHom.

                                  Equations
                                  Instances For
                                    noncomputable def LocallyConstant.comapMonoidHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [MulOneClass Z] (f : C(X, Y)) :

                                    LocallyConstant.comap as a MonoidHom.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem LocallyConstant.comapₗ_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (f : C(X, Y)) (g : LocallyConstant Y Z) :
                                      ∀ (a : X), ((LocallyConstant.comapₗ R f) g) a = g (f a)
                                      noncomputable def LocallyConstant.comapₗ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (f : C(X, Y)) :

                                      LocallyConstant.comap as a linear map.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem LocallyConstant.comapRingHom_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Semiring Z] (f : C(X, Y)) (g : LocallyConstant Y Z) :
                                        ∀ (a : X), ((LocallyConstant.comapRingHom f) g) a = g (f a)
                                        noncomputable def LocallyConstant.comapRingHom {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Semiring Z] (f : C(X, Y)) :

                                        LocallyConstant.comap as a RingHom.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem LocallyConstant.comapₐ_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (f : C(X, Y)) (g : LocallyConstant Y Z) :
                                          ∀ (a : X), ((LocallyConstant.comapₐ R f) g) a = g (f a)
                                          noncomputable def LocallyConstant.comapₐ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (f : C(X, Y)) :

                                          LocallyConstant.comap as an AlgHom

                                          Equations
                                          Instances For
                                            noncomputable def LocallyConstant.congrLeftAddEquiv {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Add Z] (e : X ≃ₜ Y) :

                                            LocallyConstant.congrLeft as an AddEquiv.

                                            Equations
                                            Instances For
                                              theorem LocallyConstant.congrLeftAddEquiv.proof_1 {X : Type u_2} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_1} [Add Z] (e : X ≃ₜ Y) (x : LocallyConstant X Z) (y : LocallyConstant X Z) :
                                              (LocallyConstant.comapAddHom { toFun := (Homeomorph.symm e), continuous_toFun := }) (x + y) = (LocallyConstant.comapAddHom { toFun := (Homeomorph.symm e), continuous_toFun := }) x + (LocallyConstant.comapAddHom { toFun := (Homeomorph.symm e), continuous_toFun := }) y
                                              @[simp]
                                              theorem LocallyConstant.congrLeftMulEquiv_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Mul Z] (e : X ≃ₜ Y) (g : LocallyConstant X Z) :
                                              ∀ (a : Y), ((LocallyConstant.congrLeftMulEquiv e) g) a = g ((Homeomorph.symm e) a)
                                              @[simp]
                                              theorem LocallyConstant.congrLeftAddEquiv_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Add Z] (e : X ≃ₜ Y) (g : LocallyConstant X Z) :
                                              ∀ (a : Y), ((LocallyConstant.congrLeftAddEquiv e) g) a = g ((Homeomorph.symm e) a)
                                              @[simp]
                                              theorem LocallyConstant.congrLeftAddEquiv_symm_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Add Z] (e : X ≃ₜ Y) (g : LocallyConstant Y Z) :
                                              ∀ (a : X), ((AddEquiv.symm (LocallyConstant.congrLeftAddEquiv e)) g) a = g (e a)
                                              @[simp]
                                              theorem LocallyConstant.congrLeftMulEquiv_symm_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Mul Z] (e : X ≃ₜ Y) (g : LocallyConstant Y Z) :
                                              ∀ (a : X), ((MulEquiv.symm (LocallyConstant.congrLeftMulEquiv e)) g) a = g (e a)
                                              noncomputable def LocallyConstant.congrLeftMulEquiv {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Mul Z] (e : X ≃ₜ Y) :

                                              LocallyConstant.congrLeft as a MulEquiv.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem LocallyConstant.congrLeftₗ_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (e : X ≃ₜ Y) (g : LocallyConstant X Z) :
                                                ∀ (a : Y), ((LocallyConstant.congrLeftₗ R e) g) a = g ((Homeomorph.symm e) a)
                                                @[simp]
                                                theorem LocallyConstant.congrLeftₗ_symm_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (e : X ≃ₜ Y) :
                                                ∀ (a : LocallyConstant Y Z) (a_1 : X), ((LinearEquiv.symm (LocallyConstant.congrLeftₗ R e)) a) a_1 = a (e a_1)
                                                noncomputable def LocallyConstant.congrLeftₗ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [Semiring R] [AddCommMonoid Z] [Module R Z] (e : X ≃ₜ Y) :

                                                LocallyConstant.congrLeft as a linear equivalence.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem LocallyConstant.congrLeftRingEquiv_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Semiring Z] (e : X ≃ₜ Y) (g : LocallyConstant X Z) :
                                                  ∀ (a : Y), ((LocallyConstant.congrLeftRingEquiv e) g) a = g ((Homeomorph.symm e) a)
                                                  @[simp]
                                                  noncomputable def LocallyConstant.congrLeftRingEquiv {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} [Semiring Z] (e : X ≃ₜ Y) :

                                                  LocallyConstant.congrLeft as a RingEquiv.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem LocallyConstant.congrLeftₐ_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (e : X ≃ₜ Y) (g : LocallyConstant X Z) :
                                                    ∀ (a : Y), ((LocallyConstant.congrLeftₐ R e) g) a = g ((Homeomorph.symm e) a)
                                                    @[simp]
                                                    theorem LocallyConstant.congrLeftₐ_symm_apply_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (e : X ≃ₜ Y) (g : LocallyConstant Y Z) :
                                                    ∀ (a : X), ((AlgEquiv.symm (LocallyConstant.congrLeftₐ R e)) g) a = g (e a)
                                                    noncomputable def LocallyConstant.congrLeftₐ {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {Z : Type u_6} (R : Type u_7) [CommSemiring R] [Semiring Z] [Algebra R Z] (e : X ≃ₜ Y) :

                                                    LocallyConstant.congrLeft as an AlgEquiv.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For