Documentation

Mathlib.Topology.MetricSpace.MetricSeparated

Metric separated pairs of sets #

In this file we define the predicate Metric.AreSeparated. We say that two sets in an (extended) metric space are metric separated if the (extended) distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

This notion is useful, e.g., to define metric outer measures.

def Metric.AreSeparated {X : Type u_1} [EMetricSpace X] (s t : Set X) :

Two sets in an (extended) metric space are called metric separated if the (extended) distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

Equations
Instances For
    @[deprecated Metric.AreSeparated (since := "2025-01-21")]
    def Metric.IsMetricSeparated {X : Type u_1} [EMetricSpace X] (s t : Set X) :

    Alias of Metric.AreSeparated.


    Two sets in an (extended) metric space are called metric separated if the (extended) distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

    Equations
    Instances For
      theorem Metric.AreSeparated.symm {X : Type u_1} [EMetricSpace X] {s t : Set X} (h : AreSeparated s t) :
      theorem Metric.AreSeparated.disjoint {X : Type u_1} [EMetricSpace X] {s t : Set X} (h : AreSeparated s t) :
      theorem Metric.AreSeparated.mono {X : Type u_1} [EMetricSpace X] {s t s' t' : Set X} (hs : s s') (ht : t t') :
      theorem Metric.AreSeparated.mono_left {X : Type u_1} [EMetricSpace X] {s t s' : Set X} (h' : AreSeparated s' t) (hs : s s') :
      theorem Metric.AreSeparated.mono_right {X : Type u_1} [EMetricSpace X] {s t t' : Set X} (h' : AreSeparated s t') (ht : t t') :
      theorem Metric.AreSeparated.union_left {X : Type u_1} [EMetricSpace X] {s t s' : Set X} (h : AreSeparated s t) (h' : AreSeparated s' t) :
      AreSeparated (s s') t
      @[simp]
      theorem Metric.AreSeparated.union_right {X : Type u_1} [EMetricSpace X] {s t t' : Set X} (h : AreSeparated s t) (h' : AreSeparated s t') :
      AreSeparated s (t t')
      @[simp]
      theorem Metric.AreSeparated.finite_iUnion_left_iff {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Set ι} (hI : I.Finite) {s : ιSet X} {t : Set X} :
      AreSeparated (⋃ iI, s i) t iI, AreSeparated (s i) t
      theorem Metric.AreSeparated.finite_iUnion_left {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Set ι} (hI : I.Finite) {s : ιSet X} {t : Set X} :
      (∀ iI, AreSeparated (s i) t)AreSeparated (⋃ iI, s i) t

      Alias of the reverse direction of Metric.AreSeparated.finite_iUnion_left_iff.

      theorem Metric.AreSeparated.finite_iUnion_right_iff {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Set ι} (hI : I.Finite) {s : Set X} {t : ιSet X} :
      AreSeparated s (⋃ iI, t i) iI, AreSeparated s (t i)
      @[simp]
      theorem Metric.AreSeparated.finset_iUnion_left_iff {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : ιSet X} {t : Set X} :
      AreSeparated (⋃ iI, s i) t iI, AreSeparated (s i) t
      theorem Metric.AreSeparated.finset_iUnion_left {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : ιSet X} {t : Set X} :
      (∀ iI, AreSeparated (s i) t)AreSeparated (⋃ iI, s i) t

      Alias of the reverse direction of Metric.AreSeparated.finset_iUnion_left_iff.

      @[simp]
      theorem Metric.AreSeparated.finset_iUnion_right_iff {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : Set X} {t : ιSet X} :
      AreSeparated s (⋃ iI, t i) iI, AreSeparated s (t i)
      theorem Metric.AreSeparated.finset_iUnion_right {X : Type u_1} [EMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : Set X} {t : ιSet X} :
      (∀ iI, AreSeparated s (t i))AreSeparated s (⋃ iI, t i)

      Alias of the reverse direction of Metric.AreSeparated.finset_iUnion_right_iff.