Documentation

Mathlib.Topology.MetricSpace.MetricSeparated

Metric separation #

This file defines a few notions of separations of sets in a metric space.

The first notion (Metric.IsSeparated) is quantitative and about a single set: A set s is ε-separated if its elements are pairwise at distance at least ε from each other.

The second notion ( Metric.AreSeparated) is qualitative and about two sets: Two sets s and t are separated if the distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

Metric-separated sets #

In this section we define the predicate Metric.IsSeparated for ε-separated sets.

def Metric.IsSeparated {X : Type u_1} [PseudoEMetricSpace X] (ε : ENNReal) (s : Set X) :

A set s is ε-separated if its elements are pairwise at distance at least ε from each other.

Equations
Instances For
    @[simp]
    theorem Metric.IsSeparated.anti {X : Type u_1} [PseudoEMetricSpace X] {s : Set X} {ε δ : ENNReal} (hεδ : ε δ) (hs : IsSeparated δ s) :
    theorem Metric.IsSeparated.subset {X : Type u_1} [PseudoEMetricSpace X] {s t : Set X} {ε : ENNReal} (hst : s t) (hs : IsSeparated ε t) :
    theorem Metric.isSeparated_insert {X : Type u_1} [PseudoEMetricSpace X] {s : Set X} {ε : ENNReal} {x : X} :
    IsSeparated ε (insert x s) IsSeparated ε s ys, x yε < edist x y
    theorem Metric.isSeparated_insert_of_not_mem {X : Type u_1} [PseudoEMetricSpace X] {s : Set X} {ε : ENNReal} {x : X} (hx : xs) :
    IsSeparated ε (insert x s) IsSeparated ε s ys, ε < edist x y
    theorem Metric.IsSeparated.insert {X : Type u_1} [PseudoEMetricSpace X] {s : Set X} {ε : ENNReal} {x : X} (hs : IsSeparated ε s) (h : ys, x yε < edist x y) :

    Metric separated pairs of sets #

    In this section we define the predicate Metric.AreSeparated. We say that two sets in an (extended) metric space are metric separated if the (extended) distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

    This notion is useful, e.g., to define metric outer measures.

    def Metric.AreSeparated {X : Type u_1} [PseudoEMetricSpace X] (s t : Set X) :

    Two sets in an (extended) metric space are called metric separated if the (extended) distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

    Equations
    Instances For
      @[deprecated Metric.AreSeparated (since := "2025-01-21")]

      Alias of Metric.AreSeparated.


      Two sets in an (extended) metric space are called metric separated if the (extended) distance between x ∈ s and y ∈ t is bounded from below by a positive constant.

      Equations
      Instances For
        theorem Metric.AreSeparated.mono {X : Type u_1} [PseudoEMetricSpace X] {s t s' t' : Set X} (hs : s s') (ht : t t') :
        theorem Metric.AreSeparated.mono_left {X : Type u_1} [PseudoEMetricSpace X] {s t s' : Set X} (h' : AreSeparated s' t) (hs : s s') :
        theorem Metric.AreSeparated.mono_right {X : Type u_1} [PseudoEMetricSpace X] {s t t' : Set X} (h' : AreSeparated s t') (ht : t t') :
        theorem Metric.AreSeparated.union_left {X : Type u_1} [PseudoEMetricSpace X] {s t s' : Set X} (h : AreSeparated s t) (h' : AreSeparated s' t) :
        AreSeparated (s s') t
        theorem Metric.AreSeparated.union_right {X : Type u_1} [PseudoEMetricSpace X] {s t t' : Set X} (h : AreSeparated s t) (h' : AreSeparated s t') :
        AreSeparated s (t t')
        theorem Metric.AreSeparated.finite_iUnion_left_iff {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Set ι} (hI : I.Finite) {s : ιSet X} {t : Set X} :
        AreSeparated (⋃ iI, s i) t iI, AreSeparated (s i) t
        theorem Metric.AreSeparated.finite_iUnion_left {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Set ι} (hI : I.Finite) {s : ιSet X} {t : Set X} :
        (∀ iI, AreSeparated (s i) t)AreSeparated (⋃ iI, s i) t

        Alias of the reverse direction of Metric.AreSeparated.finite_iUnion_left_iff.

        theorem Metric.AreSeparated.finite_iUnion_right_iff {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Set ι} (hI : I.Finite) {s : Set X} {t : ιSet X} :
        AreSeparated s (⋃ iI, t i) iI, AreSeparated s (t i)
        @[simp]
        theorem Metric.AreSeparated.finset_iUnion_left_iff {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : ιSet X} {t : Set X} :
        AreSeparated (⋃ iI, s i) t iI, AreSeparated (s i) t
        theorem Metric.AreSeparated.finset_iUnion_left {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : ιSet X} {t : Set X} :
        (∀ iI, AreSeparated (s i) t)AreSeparated (⋃ iI, s i) t

        Alias of the reverse direction of Metric.AreSeparated.finset_iUnion_left_iff.

        @[simp]
        theorem Metric.AreSeparated.finset_iUnion_right_iff {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : Set X} {t : ιSet X} :
        AreSeparated s (⋃ iI, t i) iI, AreSeparated s (t i)
        theorem Metric.AreSeparated.finset_iUnion_right {X : Type u_1} [PseudoEMetricSpace X] {ι : Type u_2} {I : Finset ι} {s : Set X} {t : ιSet X} :
        (∀ iI, AreSeparated s (t i))AreSeparated s (⋃ iI, t i)

        Alias of the reverse direction of Metric.AreSeparated.finset_iUnion_right_iff.