Mayer-Vietoris squares #
Given two open subsets U
and V
of a topological space T
,
we construct the associated Mayer-Vietoris square:
U ⊓ V ---> U
| |
v v
V ---> U ⊔ V
noncomputable def
Opens.mayerVietorisSquare'
{T : Type u}
[TopologicalSpace T]
(sq : CategoryTheory.Square (TopologicalSpace.Opens T))
(h₄ : sq.X₄ = sq.X₂ ⊔ sq.X₃)
(h₁ : sq.X₁ = sq.X₂ ⊓ sq.X₃)
:
(Opens.grothendieckTopology T).MayerVietorisSquare
A square consisting of opens X₂ ⊓ X₃
, X₂
, X₃
and X₂ ⊔ X₃
is
a Mayer-Vietoris square.
Equations
Instances For
@[simp]
theorem
Opens.mayerVietorisSquare'_toSquare
{T : Type u}
[TopologicalSpace T]
(sq : CategoryTheory.Square (TopologicalSpace.Opens T))
(h₄ : sq.X₄ = sq.X₂ ⊔ sq.X₃)
(h₁ : sq.X₁ = sq.X₂ ⊓ sq.X₃)
:
(Opens.mayerVietorisSquare' sq h₄ h₁).toSquare = sq
noncomputable def
Opens.mayerVietorisSquare
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
(Opens.grothendieckTopology T).MayerVietorisSquare
The Mayer-Vietoris square attached to two open subsets of a topological space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Opens.mayerVietorisSquare_X₃
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
(Opens.mayerVietorisSquare U V).X₃ = V
@[simp]
theorem
Opens.mayerVietorisSquare_f₁₃_down_down
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
⋯ = ⋯
@[simp]
theorem
Opens.mayerVietorisSquare_X₁_coe
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
↑(Opens.mayerVietorisSquare U V).X₁ = ↑U ∩ ↑V
@[simp]
theorem
Opens.mayerVietorisSquare_f₂₄_down_down
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
⋯ = ⋯
@[simp]
theorem
Opens.mayerVietorisSquare_f₃₄_down_down
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
⋯ = ⋯
@[simp]
theorem
Opens.mayerVietorisSquare_X₄_coe
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
↑(Opens.mayerVietorisSquare U V).X₄ = ↑U ∪ ↑V
@[simp]
theorem
Opens.mayerVietorisSquare_X₂
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
(Opens.mayerVietorisSquare U V).X₂ = U
@[simp]
theorem
Opens.mayerVietorisSquare_f₁₂_down_down
{T : Type u}
[TopologicalSpace T]
(U V : TopologicalSpace.Opens T)
:
⋯ = ⋯