Documentation

Mathlib.Topology.Spectral.Hom

Spectral maps #

This file defines spectral maps. A map is spectral when it's continuous and the preimage of a compact open set is compact open.

Main declarations #

TODO #

Once we have SpectralSpace, IsSpectralMap should move to Mathlib.Topology.Spectral.Basic.

structure IsSpectralMap {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : αβ) extends Continuous f :

A function between topological spaces is spectral if it is continuous and the preimage of every compact open set is compact open.

Stacks Tag 005A

Stacks Tag 08YG

Instances For
    theorem IsCompact.preimage_of_isOpen {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {s : Set β} (hf : IsSpectralMap f) (h₀ : IsCompact s) (h₁ : IsOpen s) :
    theorem IsSpectralMap.continuous {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : IsSpectralMap f) :
    theorem IsSpectralMap.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {f : βγ} {g : αβ} (hf : IsSpectralMap f) (hg : IsSpectralMap g) :

    Stacks Tag 005B

    structure SpectralMap (α : Type u_6) (β : Type u_7) [TopologicalSpace α] [TopologicalSpace β] :
    Type (max u_6 u_7)

    The type of spectral maps from α to β.

    • toFun : αβ

      function between topological spaces

    • spectral' : IsSpectralMap self.toFun

      proof that toFun is a spectral map

    Instances For
      class SpectralMapClass (F : Type u_6) (α : Type u_7) (β : Type u_8) [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] :

      SpectralMapClass F α β states that F is a type of spectral maps.

      You should extend this class when you extend SpectralMap.

      • map_spectral (f : F) : IsSpectralMap f

        statement that F is a type of spectral maps

      Instances
        @[instance 100]
        instance SpectralMapClass.toContinuousMapClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] [SpectralMapClass F α β] :
        instance instCoeTCSpectralMapOfSpectralMapClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] [FunLike F α β] [SpectralMapClass F α β] :
        CoeTC F (SpectralMap α β)
        Equations
        • instCoeTCSpectralMapOfSpectralMapClass = { coe := fun (f : F) => { toFun := f, spectral' := } }

        Spectral maps #

        def SpectralMap.toContinuousMap {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) :
        C(α, β)

        Reinterpret a SpectralMap as a ContinuousMap.

        Equations
        • f.toContinuousMap = { toFun := f.toFun, continuous_toFun := }
        Instances For
          instance SpectralMap.instFunLike {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] :
          FunLike (SpectralMap α β) α β
          Equations
          • SpectralMap.instFunLike = { coe := SpectralMap.toFun, coe_injective' := }
          @[simp]
          theorem SpectralMap.toFun_eq_coe {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : SpectralMap α β} :
          f.toFun = f
          theorem SpectralMap.ext {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f g : SpectralMap α β} (h : ∀ (a : α), f a = g a) :
          f = g
          def SpectralMap.copy {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) (f' : αβ) (h : f' = f) :

          Copy of a SpectralMap with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { toFun := f', spectral' := }
          Instances For
            @[simp]
            theorem SpectralMap.coe_copy {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) (f' : αβ) (h : f' = f) :
            (f.copy f' h) = f'
            theorem SpectralMap.copy_eq {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) (f' : αβ) (h : f' = f) :
            f.copy f' h = f
            def SpectralMap.id (α : Type u_2) [TopologicalSpace α] :

            id as a SpectralMap.

            Equations
            Instances For
              @[simp]
              theorem SpectralMap.coe_id (α : Type u_2) [TopologicalSpace α] :
              (SpectralMap.id α) = id
              @[simp]
              theorem SpectralMap.id_apply {α : Type u_2} [TopologicalSpace α] (a : α) :
              (SpectralMap.id α) a = a
              def SpectralMap.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :

              Composition of SpectralMaps as a SpectralMap.

              Equations
              • f.comp g = { toFun := (f.toContinuousMap.comp g.toContinuousMap), spectral' := }
              Instances For
                @[simp]
                theorem SpectralMap.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :
                (f.comp g) = f g
                @[simp]
                theorem SpectralMap.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) (a : α) :
                (f.comp g) a = f (g a)
                theorem SpectralMap.coe_comp_continuousMap {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :
                f g = f g
                @[simp]
                theorem SpectralMap.coe_comp_continuousMap' {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] (f : SpectralMap β γ) (g : SpectralMap α β) :
                (f.comp g) = (↑f).comp g
                @[simp]
                theorem SpectralMap.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ] (f : SpectralMap γ δ) (g : SpectralMap β γ) (h : SpectralMap α β) :
                (f.comp g).comp h = f.comp (g.comp h)
                @[simp]
                theorem SpectralMap.comp_id {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) :
                f.comp (SpectralMap.id α) = f
                @[simp]
                theorem SpectralMap.id_comp {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : SpectralMap α β) :
                (SpectralMap.id β).comp f = f
                @[simp]
                theorem SpectralMap.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g₁ g₂ : SpectralMap β γ} {f : SpectralMap α β} (hf : Function.Surjective f) :
                g₁.comp f = g₂.comp f g₁ = g₂
                @[simp]
                theorem SpectralMap.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [TopologicalSpace α] [TopologicalSpace β] [TopologicalSpace γ] {g : SpectralMap β γ} {f₁ f₂ : SpectralMap α β} (hg : Function.Injective g) :
                g.comp f₁ = g.comp f₂ f₁ = f₂