Hausdorff uniformity #
This file defines the Hausdorff uniformity on the types of closed subsets, compact subsets and and nonempty compact subsets of a uniform space. This is the generalization of the uniformity induced by the Hausdorff metric to hyperspaces of uniform spaces.
@[simp]
@[reducible, inline]
The Hausdorff uniformity on the powerset of a uniform space. Used for defining the uniformities
on Closeds, Compacts and NonemptyCompacts.
See note [reducible non-instances].
Equations
- UniformSpace.hausdorff α = UniformSpace.ofCore { uniformity := (uniformity α).lift' hausdorffEntourage, refl := ⋯, symm := ⋯, comp := ⋯ }
Instances For
theorem
Filter.HasBasis.uniformity_hausdorff
{α : Type u_1}
[UniformSpace α]
{ι : Sort u_2}
{p : ι → Prop}
{s : ι → Set (α × α)}
(h : (uniformity α).HasBasis p s)
:
(uniformity (Set α)).HasBasis p (hausdorffEntourage ∘ s)
theorem
UniformSpace.hausdorff.isClosed_powerset
{α : Type u_1}
[UniformSpace α]
{F : Set α}
(hF : IsClosed F)
:
theorem
UniformSpace.hausdorff.isUniformEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
:
IsUniformEmbedding fun (x : α) => {x}
theorem
UniformSpace.hausdorff.isClosedEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
[T0Space α]
:
Topology.IsClosedEmbedding fun (x : α) => {x}
theorem
TotallyBounded.powerset_hausdorff
{α : Type u_1}
[UniformSpace α]
{t : Set α}
(ht : TotallyBounded t)
:
TotallyBounded (𝒫 t)
In the Hausdorff uniformity, the powerset of a totally bounded set is totally bounded.
instance
TopologicalSpace.Closeds.uniformSpace
{α : Type u_1}
[UniformSpace α]
:
UniformSpace (Closeds α)
theorem
Filter.HasBasis.uniformity_closeds
{α : Type u_1}
[UniformSpace α]
{ι : Sort u_2}
{p : ι → Prop}
{s : ι → Set (α × α)}
(h : (uniformity α).HasBasis p s)
:
(uniformity (TopologicalSpace.Closeds α)).HasBasis p fun (i : ι) =>
Prod.map SetLike.coe SetLike.coe ⁻¹' hausdorffEntourage (s i)
theorem
TopologicalSpace.Closeds.totallyBounded_subsets_of_totallyBounded
{α : Type u_1}
[UniformSpace α]
{t : Set α}
(ht : TotallyBounded t)
:
theorem
TopologicalSpace.Closeds.isUniformEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
[T0Space α]
:
theorem
TopologicalSpace.Closeds.uniformContinuous_singleton
{α : Type u_1}
[UniformSpace α]
[T0Space α]
:
theorem
TopologicalSpace.Closeds.isEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
[T0Space α]
:
theorem
TopologicalSpace.Closeds.isClosedEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
[T0Space α]
:
instance
TopologicalSpace.Compacts.uniformSpace
{α : Type u_1}
[UniformSpace α]
:
UniformSpace (Compacts α)
theorem
Filter.HasBasis.uniformity_compacts
{α : Type u_1}
[UniformSpace α]
{ι : Sort u_2}
{p : ι → Prop}
{s : ι → Set (α × α)}
(h : (uniformity α).HasBasis p s)
:
(uniformity (TopologicalSpace.Compacts α)).HasBasis p fun (i : ι) =>
Prod.map SetLike.coe SetLike.coe ⁻¹' hausdorffEntourage (s i)
theorem
TopologicalSpace.Compacts.isUniformEmbedding_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.Compacts.uniformContinuous_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.Compacts.isEmbedding_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.Compacts.continuous_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.Compacts.totallyBounded_subsets_of_totallyBounded
{α : Type u_1}
[UniformSpace α]
{t : Set α}
(ht : TotallyBounded t)
:
theorem
TopologicalSpace.Compacts.isUniformEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
:
IsUniformEmbedding fun (x : α) => {x}
theorem
TopologicalSpace.Compacts.uniformContinuous_singleton
{α : Type u_1}
[UniformSpace α]
:
UniformContinuous fun (x : α) => {x}
theorem
Filter.HasBasis.uniformity_nonemptyCompacts
{α : Type u_1}
[UniformSpace α]
{ι : Sort u_2}
{p : ι → Prop}
{s : ι → Set (α × α)}
(h : (uniformity α).HasBasis p s)
:
(uniformity (TopologicalSpace.NonemptyCompacts α)).HasBasis p fun (i : ι) =>
Prod.map SetLike.coe SetLike.coe ⁻¹' hausdorffEntourage (s i)
theorem
TopologicalSpace.NonemptyCompacts.isUniformEmbedding_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.NonemptyCompacts.uniformContinuous_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.NonemptyCompacts.isEmbedding_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.NonemptyCompacts.continuous_toCloseds
{α : Type u_1}
[UniformSpace α]
[T2Space α]
:
theorem
TopologicalSpace.NonemptyCompacts.isOpen_inter_nonempty_of_isOpen
{α : Type u_1}
[UniformSpace α]
{s : Set α}
(hs : IsOpen s)
:
theorem
TopologicalSpace.NonemptyCompacts.isClosed_subsets_of_isClosed
{α : Type u_1}
[UniformSpace α]
{s : Set α}
(hs : IsClosed s)
:
theorem
TopologicalSpace.NonemptyCompacts.totallyBounded_subsets_of_totallyBounded
{α : Type u_1}
[UniformSpace α]
{t : Set α}
(ht : TotallyBounded t)
:
TotallyBounded {K : NonemptyCompacts α | ↑K ⊆ t}
theorem
TopologicalSpace.NonemptyCompacts.isUniformEmbedding_singleton
{α : Type u_1}
[UniformSpace α]
:
IsUniformEmbedding fun (x : α) => {x}
theorem
TopologicalSpace.NonemptyCompacts.uniformContinuous_singleton
{α : Type u_1}
[UniformSpace α]
:
UniformContinuous fun (x : α) => {x}