Completions of ultrametric (nonarchimedean) uniform spaces #
Main results #
IsUltraUniformity.completion_iff: a Hausdorff completion has a nonarchimedean uniformity iff the underlying space has a nonarchimedean uniformity.
theorem
IsUniformInducing.isUltraUniformity
{X : Type u_1}
{Y : Type u_2}
[UniformSpace X]
[UniformSpace Y]
[IsUltraUniformity Y]
{f : X → Y}
(hf : IsUniformInducing f)
:
@[deprecated CauchyFilter.isSymm_gen (since := "2025-10-17")]
theorem
IsSymmetricRel.cauchyFilter_gen
{X : Type u_1}
[UniformSpace X]
{s : SetRel X X}
[s.IsSymm]
:
Alias of CauchyFilter.isSymm_gen.
@[deprecated CauchyFilter.isTrans_gen (since := "2025-10-17")]
theorem
IsTransitiveRel.cauchyFilter_gen
{X : Type u_1}
[UniformSpace X]
{s : SetRel X X}
[s.IsTrans]
:
Alias of CauchyFilter.isTrans_gen.
@[simp]
instance
IsUltraUniformity.separationQuotient
{X : Type u_1}
[UniformSpace X]
[IsUltraUniformity X]
:
@[simp]
@[simp]