Completions of ultrametric (nonarchimedean) uniform spaces #
Main results #
IsUltraUniformity.completion_iff
: a Hausdorff completion has a nonarchimedean uniformity iff the underlying space has a nonarchimedean uniformity.
theorem
IsUniformInducing.isUltraUniformity
{X : Type u_1}
{Y : Type u_2}
[UniformSpace X]
[UniformSpace Y]
[IsUltraUniformity Y]
{f : X → Y}
(hf : IsUniformInducing f)
:
theorem
IsSymmetricRel.cauchyFilter_gen
{X : Type u_1}
[UniformSpace X]
{s : Set (X × X)}
(h : IsSymmetricRel s)
:
theorem
IsTransitiveRel.cauchyFilter_gen
{X : Type u_1}
[UniformSpace X]
{s : Set (X × X)}
(hs : IsTransitiveRel s)
:
@[simp]
instance
IsUltraUniformity.separationQuotient
{X : Type u_1}
[UniformSpace X]
[IsUltraUniformity X]
:
@[simp]
@[simp]