This is an internal implementation file of the hash map. Users of the hash map should not rely on the contents of this file.
File contents: Connecting operations on AssocList
to operations defined in List.Associative
@[simp]
theorem
Std.DHashMap.Internal.AssocList.get?_eq
{α : Type u}
{β : Type v}
[BEq α]
{l : AssocList α fun (x : α) => β}
{a : α}
:
@[simp]
theorem
Std.DHashMap.Internal.AssocList.contains_eq
{α : Type u}
{β : α → Type v}
[BEq α]
{l : AssocList α β}
{a : α}
:
@[simp]
theorem
Std.DHashMap.Internal.AssocList.getD_eq
{α : Type u}
{β : Type v}
[BEq α]
{l : AssocList α fun (x : α) => β}
{a : α}
{fallback : β}
:
@[simp]
theorem
Std.DHashMap.Internal.AssocList.getKey?_eq
{α : Type u}
{β : α → Type v}
[BEq α]
{l : AssocList α β}
{a : α}
:
@[simp]
theorem
Std.DHashMap.Internal.AssocList.getKeyD_eq
{α : Type u}
{β : α → Type v}
[BEq α]
{l : AssocList α β}
{a fallback : α}
:
theorem
Std.DHashMap.Internal.AssocList.toList_filterMap
{α : Type u}
{β : α → Type v}
{γ : α → Type w}
{f : (a : α) → β a → Option (γ a)}
{l : AssocList α β}
:
(filterMap f l).toList.Perm
(List.filterMap (fun (p : (a : α) × β a) => Option.map (fun (x : γ p.fst) => ⟨p.fst, x⟩) (f p.fst p.snd)) l.toList)