Documentation

Std.Data.DHashMap.Internal.RawLemmas

This is an internal implementation file of the hash map. Users of the hash map should not rely on the contents of this file.

File contents: verification of operations on Raw₀

@[simp]
theorem Std.DHashMap.Internal.Raw₀.buckets_empty {α : Type u} {β : αType v} {c i : Nat} {h : i < (empty c).val.buckets.size} :
@[simp]
theorem Std.DHashMap.Internal.Raw.buckets_empty {α : Type u} {β : αType v} {c i : Nat} {h : i < (Raw.empty c).buckets.size} :
@[simp]
@[simp]
theorem Std.DHashMap.Internal.buckets_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {c i : Nat} {h : i < (empty c).val.buckets.size} :
@[simp]
theorem Std.DHashMap.Internal.buckets_emptyc {α : Type u} {β : αType v} [BEq α] [Hashable α] {i : Nat} {h : i < .val.buckets.size} :
@[simp]
theorem Std.DHashMap.Internal.Raw₀.size_empty {α : Type u} {β : αType v} {c : Nat} :
(empty c).val.size = 0
theorem Std.DHashMap.Internal.Raw₀.isEmpty_eq_size_eq_zero {α : Type u} {β : αType v} (m : Raw₀ α β) :

Internal implementation detail of the hash map

Equations
Instances For

    Internal implementation detail of the hash map

    Equations
    Instances For

      Internal implementation detail of the hash map

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {c : Nat} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.contains_congr {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a b : α} (hab : (a == b) = true) :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.contains_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {a : α} {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.contains_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_iff_forall_contains {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) :
        m.val.isEmpty = true ∀ (a : α), m.contains a = false
        theorem Std.DHashMap.Internal.Raw₀.contains_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insert k v).contains a = (k == a || m.contains a)
        theorem Std.DHashMap.Internal.Raw₀.contains_of_contains_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insert k v).contains a = true(k == a) = falsem.contains a = true
        theorem Std.DHashMap.Internal.Raw₀.contains_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        (m.insert k v).contains k = true
        theorem Std.DHashMap.Internal.Raw₀.size_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.size_le_size_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.size_insert_le {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        (m.insert k v).val.size m.val.size + 1
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.erase_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {k : α} {c : Nat} :
        (empty c).erase k = empty c
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.contains_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} :
        (m.erase k).contains a = (!k == a && m.contains a)
        theorem Std.DHashMap.Internal.Raw₀.contains_of_contains_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} :
        (m.erase k).contains a = truem.contains a = true
        theorem Std.DHashMap.Internal.Raw₀.size_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.size_erase_le {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.size_le_size_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        m.val.size (m.erase k).val.size + 1
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.containsThenInsert_fst {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] {k : α} {v : β k} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.containsThenInsert_snd {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] {k : α} {v : β k} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.containsThenInsertIfNew_fst {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] {k : α} {v : β k} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.containsThenInsertIfNew_snd {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] {k : α} {v : β k} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.get?_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {a : α} {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.get?_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} :
        m.val.isEmpty = truem.get? a = none
        theorem Std.DHashMap.Internal.Raw₀.get?_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a k : α} {v : β k} :
        (m.insert k v).get? a = if h : (k == a) = true then some (cast v) else m.get? a
        theorem Std.DHashMap.Internal.Raw₀.get?_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {v : β k} :
        (m.insert k v).get? k = some v
        theorem Std.DHashMap.Internal.Raw₀.contains_eq_isSome_get? {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} :
        m.contains a = (m.get? a).isSome
        theorem Std.DHashMap.Internal.Raw₀.get?_eq_none {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} :
        m.contains a = falsem.get? a = none
        theorem Std.DHashMap.Internal.Raw₀.get?_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} :
        (m.erase k).get? a = if (k == a) = true then none else m.get? a
        theorem Std.DHashMap.Internal.Raw₀.get?_erase_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} :
        (m.erase k).get? k = none
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_empty {α : Type u} [BEq α] [Hashable α] {β : Type v} {a : α} {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_of_isEmpty {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        m.val.isEmpty = trueget? m a = none
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_insert {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β} :
        get? (m.insert k v) a = if (k == a) = true then some v else get? m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_insert_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β} :
        get? (m.insert k v) k = some v
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_eq_isSome_get? {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        m.contains a = (get? m a).isSome
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_eq_none {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        m.contains a = falseget? m a = none
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_erase {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} :
        get? (m.erase k) a = if (k == a) = true then none else get? m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_erase_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        get? (m.erase k) k = none
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_eq_get? {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] (h : m.val.WF) {a : α} :
        get? m a = m.get? a
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_congr {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a b : α} (hab : (a == b) = true) :
        get? m a = get? m b
        theorem Std.DHashMap.Internal.Raw₀.get_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {v : β k} {h₁ : (m.insert k v).contains a = true} :
        (m.insert k v).get a h₁ = if h₂ : (k == a) = true then cast v else m.get a
        theorem Std.DHashMap.Internal.Raw₀.get_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {v : β k} :
        (m.insert k v).get k = v
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.get_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {h' : (m.erase k).contains a = true} :
        (m.erase k).get a h' = m.get a
        theorem Std.DHashMap.Internal.Raw₀.get?_eq_some_get {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {h' : m.contains a = true} :
        m.get? a = some (m.get a h')
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insert {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β} {h₁ : (m.insert k v).contains a = true} :
        get (m.insert k v) a h₁ = if h₂ : (k == a) = true then v else get m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insert_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β} :
        get (m.insert k v) k = v
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.get_erase {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {h' : (m.erase k).contains a = true} :
        get (m.erase k) a h' = get m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_eq_some_get {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {h✝ : m.contains a = true} :
        get? m a = some (get m a h✝)
        theorem Std.DHashMap.Internal.Raw₀.Const.get_eq_get {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] (h : m.val.WF) {a : α} {h✝ : m.contains a = true} :
        get m a h✝ = m.get a h✝
        theorem Std.DHashMap.Internal.Raw₀.Const.get_congr {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] (h : m.val.WF) {a b : α} (hab : (a == b) = true) {h' : m.contains a = true} :
        get m a h' = get m b
        theorem Std.DHashMap.Internal.Raw₀.get!_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {a : α} [Inhabited (β a)] {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.get!_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] :
        theorem Std.DHashMap.Internal.Raw₀.get!_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} [Inhabited (β a)] {v : β k} :
        (m.insert k v).get! a = if h : (k == a) = true then cast v else m.get! a
        theorem Std.DHashMap.Internal.Raw₀.get!_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] {b : β a} :
        (m.insert a b).get! a = b
        theorem Std.DHashMap.Internal.Raw₀.get!_eq_default {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] :
        theorem Std.DHashMap.Internal.Raw₀.get!_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} [Inhabited (β a)] :
        (m.erase k).get! a = if (k == a) = true then default else m.get! a
        theorem Std.DHashMap.Internal.Raw₀.get!_erase_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} [Inhabited (β k)] :
        theorem Std.DHashMap.Internal.Raw₀.get?_eq_some_get! {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] :
        m.contains a = truem.get? a = some (m.get! a)
        theorem Std.DHashMap.Internal.Raw₀.get!_eq_get!_get? {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] :
        m.get! a = (m.get? a).get!
        theorem Std.DHashMap.Internal.Raw₀.get_eq_get! {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] {h✝ : m.contains a = true} :
        m.get a h✝ = m.get! a
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_empty {α : Type u} [BEq α] [Hashable α] {β : Type v} [Inhabited β] {a : α} {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_of_isEmpty {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insert {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {k a : α} {v : β} :
        get! (m.insert k v) a = if (k == a) = true then v else get! m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insert_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {k : α} {v : β} :
        get! (m.insert k v) k = v
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_eq_default {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_erase {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {k a : α} :
        get! (m.erase k) a = if (k == a) = true then default else get! m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_erase_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_eq_some_get! {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a : α} :
        m.contains a = trueget? m a = some (get! m a)
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_eq_get!_get? {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a : α} :
        get! m a = (get? m a).get!
        theorem Std.DHashMap.Internal.Raw₀.Const.get_eq_get! {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a : α} {h✝ : m.contains a = true} :
        get m a h✝ = get! m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_eq_get! {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] [Inhabited β] (h : m.val.WF) {a : α} :
        get! m a = m.get! a
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_congr {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a b : α} (hab : (a == b) = true) :
        get! m a = get! m b
        theorem Std.DHashMap.Internal.Raw₀.getD_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {a : α} {fallback : β a} {c : Nat} :
        (empty c).getD a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {fallback : β a} :
        m.val.isEmpty = truem.getD a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {fallback : β a} {v : β k} :
        (m.insert k v).getD a fallback = if h : (k == a) = true then cast v else m.getD a fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {fallback b : β a} :
        (m.insert a b).getD a fallback = b
        theorem Std.DHashMap.Internal.Raw₀.getD_eq_fallback {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {fallback : β a} :
        m.contains a = falsem.getD a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {fallback : β a} :
        (m.erase k).getD a fallback = if (k == a) = true then fallback else m.getD a fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_erase_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {fallback : β k} :
        (m.erase k).getD k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.get?_eq_some_getD {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {fallback : β a} :
        m.contains a = truem.get? a = some (m.getD a fallback)
        theorem Std.DHashMap.Internal.Raw₀.getD_eq_getD_get? {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {fallback : β a} :
        m.getD a fallback = (m.get? a).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.get_eq_getD {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} {fallback : β a} {h✝ : m.contains a = true} :
        m.get a h✝ = m.getD a fallback
        theorem Std.DHashMap.Internal.Raw₀.get!_eq_getD_default {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {a : α} [Inhabited (β a)] :
        m.get! a = m.getD a default
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_empty {α : Type u} [BEq α] [Hashable α] {β : Type v} {a : α} {fallback : β} {c : Nat} :
        getD (empty c) a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_of_isEmpty {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {fallback : β} :
        m.val.isEmpty = truegetD m a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insert {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {fallback v : β} :
        getD (m.insert k v) a fallback = if (k == a) = true then v else getD m a fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insert_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {fallback v : β} :
        getD (m.insert k v) k fallback = v
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_eq_fallback {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {fallback : β} :
        m.contains a = falsegetD m a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_erase {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {fallback : β} :
        getD (m.erase k) a fallback = if (k == a) = true then fallback else getD m a fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_erase_self {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {fallback : β} :
        getD (m.erase k) k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_eq_some_getD {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {fallback : β} :
        m.contains a = trueget? m a = some (getD m a fallback)
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_eq_getD_get? {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {fallback : β} :
        getD m a fallback = (get? m a).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.get_eq_getD {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {fallback : β} {h✝ : m.contains a = true} :
        get m a h✝ = getD m a fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_eq_getD_default {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {a : α} :
        get! m a = getD m a default
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_eq_getD {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] (h : m.val.WF) {a : α} {fallback : β} :
        getD m a fallback = m.getD a fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_congr {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a b : α} {fallback : β} (hab : (a == b) = true) :
        getD m a fallback = getD m b fallback
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.getKey?_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {a : α} {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.getKey?_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey?_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a k : α} {v : β k} :
        (m.insert k v).getKey? a = if (k == a) = true then some k else m.getKey? a
        theorem Std.DHashMap.Internal.Raw₀.getKey?_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        (m.insert k v).getKey? k = some k
        theorem Std.DHashMap.Internal.Raw₀.contains_eq_isSome_getKey? {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey?_eq_none {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey?_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} :
        (m.erase k).getKey? a = if (k == a) = true then none else m.getKey? a
        theorem Std.DHashMap.Internal.Raw₀.getKey?_erase_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} {h₁ : (m.insert k v).contains a = true} :
        (m.insert k v).getKey a h₁ = if h₂ : (k == a) = true then k else m.getKey a
        theorem Std.DHashMap.Internal.Raw₀.getKey_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        (m.insert k v).getKey k = k
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.getKey_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {h' : (m.erase k).contains a = true} :
        (m.erase k).getKey a h' = m.getKey a
        theorem Std.DHashMap.Internal.Raw₀.getKey?_eq_some_getKey {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a : α} {h' : m.contains a = true} :
        m.getKey? a = some (m.getKey a h')
        theorem Std.DHashMap.Internal.Raw₀.getKey!_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {a : α} [Inhabited α] {c : Nat} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insert k v).getKey! a = if (k == a) = true then k else m.getKey! a
        theorem Std.DHashMap.Internal.Raw₀.getKey!_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} {b : β a} :
        (m.insert a b).getKey! a = a
        theorem Std.DHashMap.Internal.Raw₀.getKey!_eq_default {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {k a : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_erase_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.getKey?_eq_some_getKey! {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} :
        m.contains a = truem.getKey? a = some (m.getKey! a)
        theorem Std.DHashMap.Internal.Raw₀.getKey!_eq_get!_getKey? {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} :
        m.getKey! a = (m.getKey? a).get!
        theorem Std.DHashMap.Internal.Raw₀.getKey_eq_getKey! {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} {h✝ : m.contains a = true} :
        m.getKey a h✝ = m.getKey! a
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_empty {α : Type u} {β : αType v} [BEq α] [Hashable α] {a fallback : α} {c : Nat} :
        (empty c).getKeyD a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_of_isEmpty {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a fallback : α} :
        m.val.isEmpty = truem.getKeyD a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insert {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a fallback : α} {v : β k} :
        (m.insert k v).getKeyD a fallback = if (k == a) = true then k else m.getKeyD a fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insert_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a fallback : α} {b : β a} :
        (m.insert a b).getKeyD a fallback = a
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_eq_fallback {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a fallback : α} :
        m.contains a = falsem.getKeyD a fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a fallback : α} :
        (m.erase k).getKeyD a fallback = if (k == a) = true then fallback else m.getKeyD a fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_erase_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k fallback : α} :
        (m.erase k).getKeyD k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getKey?_eq_some_getKeyD {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a fallback : α} :
        m.contains a = truem.getKey? a = some (m.getKeyD a fallback)
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_eq_getD_getKey? {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a fallback : α} :
        m.getKeyD a fallback = (m.getKey? a).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.getKey_eq_getKeyD {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {a fallback : α} {h✝ : m.contains a = true} :
        m.getKey a h✝ = m.getKeyD a fallback
        theorem Std.DHashMap.Internal.Raw₀.getKey!_eq_getKeyD_default {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {a : α} :
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.contains_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insertIfNew k v).contains a = (k == a || m.contains a)
        theorem Std.DHashMap.Internal.Raw₀.contains_insertIfNew_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.contains_of_contains_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insertIfNew k v).contains a = true(k == a) = falsem.contains a = true
        theorem Std.DHashMap.Internal.Raw₀.contains_of_contains_insertIfNew' {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insertIfNew k v).contains a = true¬((k == a) = true m.contains k = false) → m.contains a = true

        This is a restatement of contains_insertIfNew that is written to exactly match the proof obligation in the statement of get_insertIfNew.

        theorem Std.DHashMap.Internal.Raw₀.size_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.size_le_size_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.size_insertIfNew_le {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.get?_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {v : β k} :
        (m.insertIfNew k v).get? a = if h : (k == a) = true m.contains k = false then some (cast v) else m.get? a
        theorem Std.DHashMap.Internal.Raw₀.get_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {v : β k} {h₁ : (m.insertIfNew k v).contains a = true} :
        (m.insertIfNew k v).get a h₁ = if h₂ : (k == a) = true m.contains k = false then cast v else m.get a
        theorem Std.DHashMap.Internal.Raw₀.get!_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} [Inhabited (β a)] {v : β k} :
        (m.insertIfNew k v).get! a = if h : (k == a) = true m.contains k = false then cast v else m.get! a
        theorem Std.DHashMap.Internal.Raw₀.getD_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k a : α} {fallback : β a} {v : β k} :
        (m.insertIfNew k v).getD a fallback = if h : (k == a) = true m.contains k = false then cast v else m.getD a fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_insertIfNew {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β} :
        get? (m.insertIfNew k v) a = if (k == a) = true m.contains k = false then some v else get? m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insertIfNew {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β} {h₁ : (m.insertIfNew k v).contains a = true} :
        get (m.insertIfNew k v) a h₁ = if h₂ : (k == a) = true m.contains k = false then v else get m a
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insertIfNew {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {k a : α} {v : β} :
        get! (m.insertIfNew k v) a = if (k == a) = true m.contains k = false then v else get! m a
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insertIfNew {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {fallback v : β} :
        getD (m.insertIfNew k v) a fallback = if (k == a) = true m.contains k = false then v else getD m a fallback
        theorem Std.DHashMap.Internal.Raw₀.getKey?_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.getKey_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a : α} {v : β k} {h₁ : (m.insertIfNew k v).contains a = true} :
        (m.insertIfNew k v).getKey a h₁ = if h₂ : (k == a) = true m.contains k = false then k else m.getKey a
        theorem Std.DHashMap.Internal.Raw₀.getKey!_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {k a : α} {v : β k} :
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insertIfNew {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k a fallback : α} {v : β k} :
        (m.insertIfNew k v).getKeyD a fallback = if (k == a) = true m.contains k = false then k else m.getKeyD a fallback
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.getThenInsertIfNew?_fst {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] {k : α} {v : β k} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.getThenInsertIfNew?_snd {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] {k : α} {v : β k} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.getThenInsertIfNew?_fst {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) {k : α} {v : β} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.getThenInsertIfNew?_snd {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) {k : α} {v : β} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.length_keys {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_keys {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.contains_keys {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {k : α} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.mem_keys {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.distinct_keys {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) :
        List.Pairwise (fun (a b : α) => (a == b) = false) m.val.keys
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.insertMany_nil {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.insertMany_list_singleton {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] {k : α} {v : β k} :
        (m.insertMany [k, v]).val = m.insert k v
        theorem Std.DHashMap.Internal.Raw₀.insertMany_cons {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] {l : List ((a : α) × β a)} {k : α} {v : β k} :
        (m.insertMany (k, v :: l)).val = ((m.insert k v).insertMany l).val
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.contains_insertMany_list {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.contains_of_contains_insertMany_list {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.get?_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} (h' : (List.map Sigma.fst l).contains k = false) :
        (m.insertMany l).val.get? k = m.get? k
        theorem Std.DHashMap.Internal.Raw₀.get?_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
        (m.insertMany l).val.get? k' = some (cast v)
        theorem Std.DHashMap.Internal.Raw₀.get_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} (contains : (List.map Sigma.fst l).contains k = false) {h' : (m.insertMany l).val.contains k = true} :
        (m.insertMany l).val.get k h' = m.get k
        theorem Std.DHashMap.Internal.Raw₀.get_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) {h' : (m.insertMany l).val.contains k' = true} :
        (m.insertMany l).val.get k' h' = cast v
        theorem Std.DHashMap.Internal.Raw₀.get!_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} [Inhabited (β k)] (h' : (List.map Sigma.fst l).contains k = false) :
        (m.insertMany l).val.get! k = m.get! k
        theorem Std.DHashMap.Internal.Raw₀.get!_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} [Inhabited (β k')] (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
        (m.insertMany l).val.get! k' = cast v
        theorem Std.DHashMap.Internal.Raw₀.getD_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
        (m.insertMany l).val.getD k fallback = m.getD k fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
        (m.insertMany l).val.getD k' fallback = cast v
        theorem Std.DHashMap.Internal.Raw₀.getKey?_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} (h' : (List.map Sigma.fst l).contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.getKey?_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
        theorem Std.DHashMap.Internal.Raw₀.getKey_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} (h₁ : (List.map Sigma.fst l).contains k = false) {h' : (m.insertMany l).val.contains k = true} :
        (m.insertMany l).val.getKey k h' = m.getKey k
        theorem Std.DHashMap.Internal.Raw₀.getKey_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) {h' : (m.insertMany l).val.contains k' = true} :
        (m.insertMany l).val.getKey k' h' = k
        theorem Std.DHashMap.Internal.Raw₀.getKey!_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {l : List ((a : α) × β a)} {k : α} (h' : (List.map Sigma.fst l).contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
        (m.insertMany l).val.getKey! k' = k
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insertMany_list_of_contains_eq_false {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k fallback : α} (h' : (List.map Sigma.fst l).contains k = false) :
        (m.insertMany l).val.getKeyD k fallback = m.getKeyD k fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insertMany_list_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
        (m.insertMany l).val.getKeyD k' fallback = k
        theorem Std.DHashMap.Internal.Raw₀.size_insertMany_list {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) :
        (∀ (a : α), m.contains a = true(List.map Sigma.fst l).contains a = false)(m.insertMany l).val.val.size = m.val.size + l.length
        theorem Std.DHashMap.Internal.Raw₀.size_le_size_insertMany_list {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} :
        theorem Std.DHashMap.Internal.Raw₀.size_insertMany_list_le {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_insertMany_list {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List ((a : α) × β a)} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.insertMany_nil {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.insertMany_list_singleton {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) {k : α} {v : β} :
        (insertMany m [(k, v)]).val = m.insert k v
        theorem Std.DHashMap.Internal.Raw₀.Const.insertMany_cons {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) {l : List (α × β)} {k : α} {v : β} :
        (insertMany m ((k, v) :: l)).val = (insertMany (m.insert k v) l).val
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_insertMany_list {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_of_contains_insertMany_list {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} (h' : (List.map Prod.fst l).contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} (h₁ : (List.map Prod.fst l).contains k = false) {h' : (insertMany m l).val.contains k = true} :
        (insertMany m l).val.getKey k h' = m.getKey k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) {h' : (insertMany m l).val.contains k' = true} :
        (insertMany m l).val.getKey k' h' = k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {l : List (α × β)} {k : α} (h' : (List.map Prod.fst l).contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
        (insertMany m l).val.getKey! k' = k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k fallback : α} (h' : (List.map Prod.fst l).contains k = false) :
        (insertMany m l).val.getKeyD k fallback = m.getKeyD k fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
        (insertMany m l).val.getKeyD k' fallback = k
        theorem Std.DHashMap.Internal.Raw₀.Const.size_insertMany_list {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) :
        (∀ (a : α), m.contains a = true(List.map Prod.fst l).contains a = false)(insertMany m l).val.val.size = m.val.size + l.length
        theorem Std.DHashMap.Internal.Raw₀.Const.size_le_size_insertMany_list {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} :
        theorem Std.DHashMap.Internal.Raw₀.Const.size_insertMany_list_le {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.isEmpty_insertMany_list {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} (h' : (List.map Prod.fst l).contains k = false) :
        get? (insertMany m l).val k = get? m k
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
        get? (insertMany m l).val k' = some v
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} (h₁ : (List.map Prod.fst l).contains k = false) {h' : (insertMany m l).val.contains k = true} :
        get (insertMany m l).val k h' = get m k
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) {h' : (insertMany m l).val.contains k' = true} :
        get (insertMany m l).val k' h' = v
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {l : List (α × β)} {k : α} (h' : (List.map Prod.fst l).contains k = false) :
        get! (insertMany m l).val k = get! m k
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] [Inhabited β] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
        get! (insertMany m l).val k' = v
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insertMany_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k : α} {fallback : β} (h' : (List.map Prod.fst l).contains k = false) :
        getD (insertMany m l).val k fallback = getD m k fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insertMany_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} (m : Raw₀ α fun (x : α) => β) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v fallback : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
        getD (insertMany m l).val k' fallback = v
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.insertManyIfNewUnit_cons {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) {l : List α} {k : α} :
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_insertManyIfNewUnit_list {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_of_contains_insertManyIfNewUnit_list {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k : α} (h₂ : l.contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_insertManyIfNewUnit_list_of_contains_eq_false_of_mem {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k k' : α} (k_beq : (k == k') = true) :
        m.contains k = falseList.Pairwise (fun (a b : α) => (a == b) = false) lk l(insertManyIfNewUnit m l).val.getKey? k' = some k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertManyIfNewUnit_list_of_contains {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k : α} {h' : (insertManyIfNewUnit m l).val.contains k = true} (contains : m.contains k = true) :
        (insertManyIfNewUnit m l).val.getKey k h' = m.getKey k contains
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertManyIfNewUnit_list_of_contains_eq_false_of_mem {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k k' : α} (k_beq : (k == k') = true) {h' : (insertManyIfNewUnit m l).val.contains k' = true} :
        m.contains k = falseList.Pairwise (fun (a b : α) => (a == b) = false) lk l(insertManyIfNewUnit m l).val.getKey k' h' = k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertManyIfNewUnit_list_mem_of_contains {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k : α} (contains : m.contains k = true) {h' : (insertManyIfNewUnit m l).val.contains k = true} :
        (insertManyIfNewUnit m l).val.getKey k h' = m.getKey k contains
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_insertManyIfNewUnit_list_of_contains_eq_false_of_mem {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] [Inhabited α] (h : m.val.WF) {l : List α} {k k' : α} (k_beq : (k == k') = true) :
        m.contains k = falseList.Pairwise (fun (a b : α) => (a == b) = false) lk l(insertManyIfNewUnit m l).val.getKey! k' = k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertManyIfNewUnit_list_of_contains_eq_false_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k fallback : α} :
        m.contains k = falsel.contains k = false(insertManyIfNewUnit m l).val.getKeyD k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertManyIfNewUnit_list_of_contains_eq_false_of_mem {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k k' fallback : α} (k_beq : (k == k') = true) :
        m.contains k = falseList.Pairwise (fun (a b : α) => (a == b) = false) lk l(insertManyIfNewUnit m l).val.getKeyD k' fallback = k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertManyIfNewUnit_list_of_contains {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} {k fallback : α} :
        m.contains k = true(insertManyIfNewUnit m l).val.getKeyD k fallback = m.getKeyD k fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.size_insertManyIfNewUnit_list {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) [EquivBEq α] [LawfulHashable α] (h : m.val.WF) {l : List α} (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) :
        (∀ (a : α), m.contains a = truel.contains a = false)(insertManyIfNewUnit m l).val.val.size = m.val.size + l.length
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insertManyIfNewUnit_list {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) {l : List α} {k : α} {h : (insertManyIfNewUnit m l).val.contains k = true} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insertManyIfNewUnit_list {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) {l : List α} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insertManyIfNewUnit_list {α : Type u} [BEq α] [Hashable α] (m : Raw₀ α fun (x : α) => Unit) {l : List α} {k : α} {fallback : Unit} :
        getD (insertManyIfNewUnit m l).val k fallback = ()
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.insertMany_empty_list_singleton {α : Type u} {β : αType v} [BEq α] [Hashable α] {k : α} {v : β k} :
        (empty.insertMany [k, v]).val = empty.insert k v
        theorem Std.DHashMap.Internal.Raw₀.insertMany_empty_list_cons {α : Type u} {β : αType v} [BEq α] [Hashable α] {k : α} {v : β k} {tl : List ((a : α) × β a)} :
        (empty.insertMany (k, v :: tl)).val = ((empty.insert k v).insertMany tl).val
        theorem Std.DHashMap.Internal.Raw₀.contains_insertMany_empty_list {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k : α} :
        theorem Std.DHashMap.Internal.Raw₀.get?_insertMany_empty_list_of_contains_eq_false {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} (h : (List.map Sigma.fst l).contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.get?_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
        (empty.insertMany l).val.get? k' = some (cast v)
        theorem Std.DHashMap.Internal.Raw₀.get_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) {h : (empty.insertMany l).val.contains k' = true} :
        (empty.insertMany l).val.get k' h = cast v
        theorem Std.DHashMap.Internal.Raw₀.get!_insertMany_empty_list_of_contains_eq_false {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} [Inhabited (β k)] (h : (List.map Sigma.fst l).contains k = false) :
        theorem Std.DHashMap.Internal.Raw₀.get!_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} [Inhabited (β k')] (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
        (empty.insertMany l).val.get! k' = cast v
        theorem Std.DHashMap.Internal.Raw₀.getD_insertMany_empty_list_of_contains_eq_false {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k : α} {fallback : β k} (contains_eq_false : (List.map Sigma.fst l).contains k = false) :
        (empty.insertMany l).val.getD k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [LawfulBEq α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) {v : β k} {fallback : β k'} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k, v l) :
        (empty.insertMany l).val.getD k' fallback = cast v
        theorem Std.DHashMap.Internal.Raw₀.getKey?_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
        theorem Std.DHashMap.Internal.Raw₀.getKey_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) {h' : (empty.insertMany l).val.contains k' = true} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List ((a : α) × β a)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insertMany_empty_list_of_contains_eq_false {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k fallback : α} (h : (List.map Sigma.fst l).contains k = false) :
        (empty.insertMany l).val.getKeyD k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_insertMany_empty_list_of_mem {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) (mem : k List.map Sigma.fst l) :
        (empty.insertMany l).val.getKeyD k' fallback = k
        theorem Std.DHashMap.Internal.Raw₀.size_insertMany_empty_list {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} (distinct : List.Pairwise (fun (a b : (a : α) × β a) => (a.fst == b.fst) = false) l) :
        theorem Std.DHashMap.Internal.Raw₀.size_insertMany_empty_list_le {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_insertMany_empty_list {α : Type u} {β : αType v} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List ((a : α) × β a)} :
        theorem Std.DHashMap.Internal.Raw₀.Const.insertMany_empty_list_cons {α : Type u} [BEq α] [Hashable α] {β : Type v} {k : α} {v : β} {tl : List (α × β)} :
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.get_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) {h : (insertMany empty l).val.contains k' = true} :
        get (insertMany empty l).val k' h = v
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v : β} [Inhabited β] (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insertMany_empty_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} [LawfulBEq α] {l : List (α × β)} {k : α} {fallback : β} (contains_eq_false : (List.map Prod.fst l).contains k = false) :
        getD (insertMany empty l).val k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [LawfulBEq α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) {v fallback : β} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : (k, v) l) :
        getD (insertMany empty l).val k' fallback = v
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) {h' : (insertMany empty l).val.contains k' = true} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List (α × β)} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertMany_empty_list_of_contains_eq_false {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k fallback : α} (h : (List.map Prod.fst l).contains k = false) :
        (insertMany empty l).val.getKeyD k fallback = fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertMany_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) (mem : k List.map Prod.fst l) :
        (insertMany empty l).val.getKeyD k' fallback = k
        theorem Std.DHashMap.Internal.Raw₀.Const.size_insertMany_empty_list {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] {l : List (α × β)} (distinct : List.Pairwise (fun (a b : α × β) => (a.fst == b.fst) = false) l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_insertManyIfNewUnit_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_insertManyIfNewUnit_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) {h' : (insertManyIfNewUnit empty l).val.contains k' = true} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_insertManyIfNewUnit_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] [Inhabited α] {l : List α} {k k' : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_insertManyIfNewUnit_empty_list_of_mem {α : Type u} [BEq α] [Hashable α] [EquivBEq α] [LawfulHashable α] {l : List α} {k k' fallback : α} (k_beq : (k == k') = true) (distinct : List.Pairwise (fun (a b : α) => (a == b) = false) l) (mem : k l) :
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_alter_eq_isEmpty_erase {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).val.isEmpty = ((m.erase k).val.isEmpty && (f (m.get? k)).isNone)
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).val.isEmpty = ((m.val.isEmpty || m.val.size == 1 && m.contains k) && (f (m.get? k)).isNone)
        theorem Std.DHashMap.Internal.Raw₀.contains_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).contains k' = if (k == k') = true then (f (m.get? k)).isSome else m.contains k'
        theorem Std.DHashMap.Internal.Raw₀.size_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).val.size = if (m.contains k && (f (m.get? k)).isNone) = true then m.val.size - 1 else if (!m.contains k && (f (m.get? k)).isSome) = true then m.val.size + 1 else m.val.size
        theorem Std.DHashMap.Internal.Raw₀.size_alter_eq_add_one {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} (h₁ : m.contains k = false) (h₂ : (f (m.get? k)).isSome = true) :
        (m.alter k f).val.size = m.val.size + 1
        theorem Std.DHashMap.Internal.Raw₀.size_alter_eq_sub_one {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} (h₁ : m.contains k = true) (h₂ : (f (m.get? k)).isNone = true) :
        (m.alter k f).val.size = m.val.size - 1
        theorem Std.DHashMap.Internal.Raw₀.size_alter_eq_self_of_not_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} (h₁ : m.contains k = false) (h₂ : (f (m.get? k)).isNone = true) :
        (m.alter k f).val.size = m.val.size
        theorem Std.DHashMap.Internal.Raw₀.size_alter_eq_self_of_mem {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} (h₁ : m.contains k = true) (h₂ : (f (m.get? k)).isSome = true) :
        (m.alter k f).val.size = m.val.size
        theorem Std.DHashMap.Internal.Raw₀.size_alter_le_size {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).val.size m.val.size + 1
        theorem Std.DHashMap.Internal.Raw₀.size_le_size_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} :
        m.val.size - 1 (m.alter k f).val.size
        theorem Std.DHashMap.Internal.Raw₀.get?_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).get? k' = if h : (k == k') = true then cast (f (m.get? k)) else m.get? k'
        theorem Std.DHashMap.Internal.Raw₀.get_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : Option (β k)Option (β k)} (hc : (m.alter k f).contains k' = true) :
        (m.alter k f).get k' hc = if heq : (k == k') = true then cast ((f (m.get? k)).get ) else m.get k'
        theorem Std.DHashMap.Internal.Raw₀.get_alter_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option (β k)Option (β k)} {hc : (m.alter k f).contains k = true} :
        (m.alter k f).get k hc = (f (m.get? k)).get
        theorem Std.DHashMap.Internal.Raw₀.get!_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] {k k' : α} (h : m.val.WF) [Inhabited (β k')] {f : Option (β k)Option (β k)} :
        (m.alter k f).get! k' = if heq : (k == k') = true then (Option.map (cast ) (f (m.get? k))).get! else m.get! k'
        theorem Std.DHashMap.Internal.Raw₀.getD_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] {k k' : α} {fallback : β k'} (h : m.val.WF) {f : Option (β k)Option (β k)} :
        (m.alter k f).getD k' fallback = if heq : (k == k') = true then (Option.map (cast ) (f (m.get? k))).getD fallback else m.getD k' fallback
        theorem Std.DHashMap.Internal.Raw₀.getD_alter_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] {k : α} {fallback : β k} (h : m.val.WF) {f : Option (β k)Option (β k)} :
        (m.alter k f).getD k fallback = (f (m.get? k)).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.getKey?_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : Option (β k)Option (β k)} :
        (m.alter k f).getKey? k' = if (k == k') = true then if (f (m.get? k)).isSome = true then some k else none else m.getKey? k'
        theorem Std.DHashMap.Internal.Raw₀.getKey!_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] [Inhabited α] {k k' : α} (h : m.val.WF) {f : Option (β k)Option (β k)} :
        (m.alter k f).getKey! k' = if (k == k') = true then if (f (m.get? k)).isSome = true then k else default else m.getKey! k'
        theorem Std.DHashMap.Internal.Raw₀.getKey_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] [Inhabited α] {k k' : α} (h : m.val.WF) {f : Option (β k)Option (β k)} (hc : (m.alter k f).contains k' = true) :
        (m.alter k f).getKey k' hc = if heq : (k == k') = true then k else m.getKey k'
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_alter {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] {k k' fallback : α} (h : m.val.WF) {f : Option (β k)Option (β k)} :
        (m.alter k f).getKeyD k' fallback = if (k == k') = true then if (f (m.get? k)).isSome = true then k else fallback else m.getKeyD k' fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.isEmpty_alter_eq_isEmpty_erase {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} :
        (alter m k f).val.isEmpty = ((m.erase k).val.isEmpty && (f (get? m k)).isNone)
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.isEmpty_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} :
        (alter m k f).val.isEmpty = ((m.val.isEmpty || m.val.size == 1 && m.contains k) && (f (get? m k)).isNone)
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : Option βOption β} :
        (alter m k f).contains k' = if (k == k') = true then (f (get? m k)).isSome else m.contains k'
        theorem Std.DHashMap.Internal.Raw₀.Const.size_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} :
        (alter m k f).val.size = if (m.contains k && (f (get? m k)).isNone) = true then m.val.size - 1 else if (!m.contains k && (f (get? m k)).isSome) = true then m.val.size + 1 else m.val.size
        theorem Std.DHashMap.Internal.Raw₀.Const.size_alter_eq_add_one {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} (h₁ : m.contains k = false) (h₂ : (f (get? m k)).isSome = true) :
        (alter m k f).val.size = m.val.size + 1
        theorem Std.DHashMap.Internal.Raw₀.Const.size_alter_eq_sub_one {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} (h₁ : m.contains k = true) (h₂ : (f (get? m k)).isNone = true) :
        (alter m k f).val.size = m.val.size - 1
        theorem Std.DHashMap.Internal.Raw₀.Const.size_alter_eq_self_of_not_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} (h₁ : m.contains k = false) (h₂ : (f (get? m k)).isNone = true) :
        (alter m k f).val.size = m.val.size
        theorem Std.DHashMap.Internal.Raw₀.Const.size_alter_eq_self_of_mem {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} (h₁ : m.contains k = true) (h₂ : (f (get? m k)).isSome = true) :
        (alter m k f).val.size = m.val.size
        theorem Std.DHashMap.Internal.Raw₀.Const.size_alter_le_size {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option βOption β} :
        (alter m k f).val.size m.val.size + 1
        theorem Std.DHashMap.Internal.Raw₀.Const.size_le_size_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) [LawfulBEq α] (h : m.val.WF) {k : α} {f : Option βOption β} :
        m.val.size - 1 (alter m k f).val.size
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : Option βOption β} :
        get? (alter m k f) k' = if (k == k') = true then f (get? m k) else get? m k'
        theorem Std.DHashMap.Internal.Raw₀.Const.get_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : Option βOption β} (hc : (alter m k f).contains k' = true) :
        get (alter m k f) k' hc = if heq : (k == k') = true then (f (get? m k)).get else get m k'
        theorem Std.DHashMap.Internal.Raw₀.Const.get_alter_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : Option βOption β} {hc : (alter m k f).contains k = true} :
        get (alter m k f) k hc = (f (get? m k)).get
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) {k k' : α} (h : m.val.WF) [Inhabited β] {f : Option βOption β} :
        get! (alter m k f) k' = if (k == k') = true then (f (get? m k)).get! else get! m k'
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) {k k' : α} {fallback : β} (h : m.val.WF) {f : Option βOption β} :
        getD (alter m k f) k' fallback = if (k == k') = true then (f (get? m k)).getD fallback else getD m k' fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_alter_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) {k : α} {fallback : β} (h : m.val.WF) {f : Option βOption β} :
        getD (alter m k f) k fallback = (f (get? m k)).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : Option βOption β} :
        (alter m k f).getKey? k' = if (k == k') = true then if (f (get? m k)).isSome = true then some k else none else m.getKey? k'
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) [Inhabited α] {k k' : α} (h : m.val.WF) {f : Option βOption β} :
        (alter m k f).getKey! k' = if (k == k') = true then if (f (get? m k)).isSome = true then k else default else m.getKey! k'
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) [Inhabited α] {k k' : α} (h : m.val.WF) {f : Option βOption β} (hc : (alter m k f).contains k' = true) :
        (alter m k f).getKey k' hc = if heq : (k == k') = true then k else m.getKey k'
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_alter {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) {k k' fallback : α} (h : m.val.WF) {f : Option βOption β} :
        (alter m k f).getKeyD k' fallback = if (k == k') = true then if (f (get? m k)).isSome = true then k else fallback else m.getKeyD k' fallback
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.isEmpty_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : β kβ k} :
        theorem Std.DHashMap.Internal.Raw₀.contains_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : β kβ k} :
        (m.modify k f).contains k' = m.contains k'
        theorem Std.DHashMap.Internal.Raw₀.size_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : β kβ k} :
        (m.modify k f).val.size = m.val.size
        theorem Std.DHashMap.Internal.Raw₀.get?_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : β kβ k} :
        (m.modify k f).get? k' = if h : (k == k') = true then cast (Option.map f (m.get? k)) else m.get? k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.get?_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : β kβ k} :
        (m.modify k f).get? k = Option.map f (m.get? k)
        theorem Std.DHashMap.Internal.Raw₀.get_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : β kβ k} (hc : (m.modify k f).contains k' = true) :
        (m.modify k f).get k' hc = if heq : (k == k') = true then cast (f (m.get k )) else m.get k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.get_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : β kβ k} {hc : (m.modify k f).contains k = true} :
        (m.modify k f).get k hc = f (m.get k )
        theorem Std.DHashMap.Internal.Raw₀.get!_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} [hi : Inhabited (β k')] {f : β kβ k} :
        (m.modify k f).get! k' = if heq : (k == k') = true then (Option.map (cast ) (Option.map f (m.get? k))).get! else m.get! k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.get!_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} [Inhabited (β k)] {f : β kβ k} :
        (m.modify k f).get! k = (Option.map f (m.get? k)).get!
        theorem Std.DHashMap.Internal.Raw₀.getD_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {fallback : β k'} {f : β kβ k} :
        (m.modify k f).getD k' fallback = if heq : (k == k') = true then (Option.map (cast ) (Option.map f (m.get? k))).getD fallback else m.getD k' fallback
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.getD_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {fallback : β k} {f : β kβ k} :
        (m.modify k f).getD k fallback = (Option.map f (m.get? k)).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.getKey?_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' : α} {f : β kβ k} :
        (m.modify k f).getKey? k' = if (k == k') = true then if m.contains k = true then some k else none else m.getKey? k'
        theorem Std.DHashMap.Internal.Raw₀.getKey?_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k : α} {f : β kβ k} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) [Inhabited α] {k k' : α} {f : β kβ k} :
        theorem Std.DHashMap.Internal.Raw₀.getKey!_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) [Inhabited α] {k : α} {f : β kβ k} :
        theorem Std.DHashMap.Internal.Raw₀.getKey_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) [Inhabited α] {k k' : α} {f : β kβ k} (hc : (m.modify k f).contains k' = true) :
        (m.modify k f).getKey k' hc = if heq : (k == k') = true then k else m.getKey k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.getKey_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) [Inhabited α] {k : α} {f : β kβ k} (hc : (m.modify k f).contains k = true) :
        (m.modify k f).getKey k hc = k
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_modify {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) {k k' fallback : α} {f : β kβ k} :
        (m.modify k f).getKeyD k' fallback = if (k == k') = true then if m.contains k = true then k else fallback else m.getKeyD k' fallback
        theorem Std.DHashMap.Internal.Raw₀.getKeyD_modify_self {α : Type u} {β : αType v} (m : Raw₀ α β) [BEq α] [Hashable α] [LawfulBEq α] (h : m.val.WF) [Inhabited α] {k fallback : α} {f : β kβ k} :
        (m.modify k f).getKeyD k fallback = if m.contains k = true then k else fallback
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.isEmpty_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : ββ} :
        theorem Std.DHashMap.Internal.Raw₀.Const.contains_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : ββ} :
        (modify m k f).contains k' = m.contains k'
        theorem Std.DHashMap.Internal.Raw₀.Const.size_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : ββ} :
        (modify m k f).val.size = m.val.size
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : ββ} :
        get? (modify m k f) k' = if (k == k') = true then Option.map f (get? m k) else get? m k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.get?_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : ββ} :
        get? (modify m k f) k = Option.map f (get? m k)
        theorem Std.DHashMap.Internal.Raw₀.Const.get_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : ββ} (hc : (modify m k f).contains k' = true) :
        get (modify m k f) k' hc = if heq : (k == k') = true then f (get m k ) else get m k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.get_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : ββ} {hc : (modify m k f).contains k = true} :
        get (modify m k f) k hc = f (get m k )
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} [hi : Inhabited β] {f : ββ} :
        get! (modify m k f) k' = if (k == k') = true then (Option.map f (get? m k)).get! else get! m k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.get!_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} [Inhabited β] {f : ββ} :
        get! (modify m k f) k = (Option.map f (get? m k)).get!
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {fallback : β} {f : ββ} :
        getD (modify m k f) k' fallback = if (k == k') = true then (Option.map f (get? m k)).getD fallback else getD m k' fallback
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.getD_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {fallback : β} {f : ββ} :
        getD (modify m k f) k fallback = (Option.map f (get? m k)).getD fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' : α} {f : ββ} :
        (modify m k f).getKey? k' = if (k == k') = true then if m.contains k = true then some k else none else m.getKey? k'
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey?_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k : α} {f : ββ} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) [Inhabited α] {k k' : α} {f : ββ} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey!_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) [Inhabited α] {k : α} {f : ββ} :
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) [Inhabited α] {k k' : α} {f : ββ} (hc : (modify m k f).contains k' = true) :
        (modify m k f).getKey k' hc = if heq : (k == k') = true then k else m.getKey k'
        @[simp]
        theorem Std.DHashMap.Internal.Raw₀.Const.getKey_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) [Inhabited α] {k : α} {f : ββ} (hc : (modify m k f).contains k = true) :
        (modify m k f).getKey k hc = k
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_modify {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) {k k' fallback : α} {f : ββ} :
        (modify m k f).getKeyD k' fallback = if (k == k') = true then if m.contains k = true then k else fallback else m.getKeyD k' fallback
        theorem Std.DHashMap.Internal.Raw₀.Const.getKeyD_modify_self {α : Type u} [BEq α] [Hashable α] {β : Type v} [EquivBEq α] [LawfulHashable α] (m : Raw₀ α fun (x : α) => β) (h : m.val.WF) [Inhabited α] {k fallback : α} {f : ββ} :
        (modify m k f).getKeyD k fallback = if m.contains k = true then k else fallback