Documentation

SphereEversion.Global.LocalisationData

structure LocalisationData {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : MM') :
Type (max (max (max (max u_2 u_4) u_5) u_7) (u_8 + 1))

Definition def:localisation_data.

Instances For
    @[reducible, inline]
    abbrev LocalisationData.ψj {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) :
    Equations
    Instances For
      def LocalisationData.ι {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : MM'} (L : LocalisationData I I' f) :

      The type indexing the source charts of the given localisation data.

      Equations
      Instances For
        theorem LocalisationData.iUnion_succ' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) {β : Type u_8} (s : ld.ιSet β) (i : IndexType ld.N) :
        ⋃ (j : IndexType ld.N), ⋃ (_ : j i), s j = (⋃ (j : IndexType ld.N), ⋃ (_ : j < i), s j) s i
        theorem nice_atlas_target (E' : Type u_4) [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') [I'.Boundaryless] (M' : Type u_6) [MetricSpace M'] [SigmaCompactSpace M'] [LocallyCompactSpace M'] [Nonempty M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
        ∃ (n : ) (ψ : IndexType nOpenSmoothEmbedding (modelWithCornersSelf E') E' I' M'), (LocallyFinite fun (i' : IndexType n) => Set.range (ψ i')) ⋃ (i' : IndexType n), (ψ i') '' Metric.ball 0 1 = Set.univ

        A collection of charts on a manifold M' which are smooth open embeddings with domain the whole model space, and which cover the manifold when restricted in each case to the unit ball.

        Equations
        Instances For
          theorem targetCharts_cover (E' : Type u_4) [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') [I'.Boundaryless] (M' : Type u_6) [MetricSpace M'] [SigmaCompactSpace M'] [LocallyCompactSpace M'] [Nonempty M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] :
          ⋃ (i' : IndexType .choose), (targetCharts E' I' M' i') '' Metric.ball 0 1 = Set.univ
          theorem nice_atlas_domain (E : Type u_1) [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {M : Type u_2} [TopologicalSpace M] [SigmaCompactSpace M] [LocallyCompactSpace M] [T2Space M] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners E H) [I.Boundaryless] [Nonempty M] [ChartedSpace H M] [IsManifold I (↑) M] (E' : Type u_4) [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') [I'.Boundaryless] {M' : Type u_6} [MetricSpace M'] [SigmaCompactSpace M'] [LocallyCompactSpace M'] [Nonempty M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {f : MM'} (hf : Continuous f) :
          ∃ (n : ) (φ : IndexType nOpenSmoothEmbedding (modelWithCornersSelf E) E I M), (∀ (i : IndexType n), ∃ (i' : IndexType .choose), Set.range (φ i) f ⁻¹' ((targetCharts E' I' M' i') '' Metric.ball 0 1)) (LocallyFinite fun (i : IndexType n) => Set.range (φ i)) ⋃ (i : IndexType n), (φ i) '' Metric.ball 0 1 = Set.univ

          Lemma lem:ex_localisation Any continuous map between manifolds has some localisation data.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem localisation_stability {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {M : Type u_2} [TopologicalSpace M] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners E H} [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [MetricSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) :
            ∃ (ε : M) (_ : ∀ (m : M), 0 < ε m) (_ : Continuous ε), ∀ (g : MM'), (∀ (m : M), dist (g m) (f m) < ε m)∀ (i : IndexType ld.N), Set.range (g (ld.φ i)) Set.range (ld.ψj i)

            Lemma lem:localisation_stability.

            def LocalisationData.ε {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {M : Type u_2} [TopologicalSpace M] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners E H} [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [MetricSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) :
            M
            Equations
            Instances For
              theorem LocalisationData.ε_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {M : Type u_2} [TopologicalSpace M] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners E H} [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [MetricSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) (m : M) :
              0 < ld.ε m
              theorem LocalisationData.ε_cont {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {M : Type u_2} [TopologicalSpace M] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners E H} [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [MetricSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) :
              theorem LocalisationData.ε_spec {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {M : Type u_2} [TopologicalSpace M] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners E H} [ChartedSpace H M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners E' H'} {M' : Type u_6} [MetricSpace M'] [ChartedSpace H' M'] {f : MM'} (ld : LocalisationData I I' f) (g : MM') (_hg : ∀ (m : M), dist (g m) (f m) < ld.ε m) (i : ld.ι) :
              Set.range (g (ld.φ i)) Set.range (ld.ψj i)
              theorem exists_stability_dist {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [FiniteDimensional E] {M : Type u_2} [TopologicalSpace M] [SigmaCompactSpace M] [LocallyCompactSpace M] [T2Space M] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners E H) [I.Boundaryless] [Nonempty M] [ChartedSpace H M] [IsManifold I (↑) M] {E' : Type u_4} [NormedAddCommGroup E'] [NormedSpace E'] [FiniteDimensional E'] {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners E' H') [I'.Boundaryless] {M' : Type u_6} [MetricSpace M'] [SigmaCompactSpace M'] [LocallyCompactSpace M'] [Nonempty M'] [ChartedSpace H' M'] [IsManifold I' (↑) M'] {f : MM'} (hf : Continuous f) :
              ∃ (ε : M), (∀ (m : M), 0 < ε m) Continuous ε ∀ (x : M), ∃ (φ : OpenSmoothEmbedding (modelWithCornersSelf E) E I M) (ψ : OpenSmoothEmbedding (modelWithCornersSelf E') E' I' M'), x Set.range φ ∀ (g : MM'), (∀ (m : M), dist (g m) (f m) < ε m)Set.range (g φ) Set.range ψ