structure
LocalisationData
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners 𝕜 E H)
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
(I' : ModelWithCorners 𝕜 E' H')
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
(f : M → M')
:
Type (max (max (max (max u_2 u_4) u_5) u_7) (u_8 + 1))
Definition def:localisation_data
.
- cont : Continuous f
- ι' : Type u_8
- N : ℕ
- φ : IndexType self.N → OpenSmoothEmbedding (modelWithCornersSelf 𝕜 E) E I M
- ψ : self.ι' → OpenSmoothEmbedding (modelWithCornersSelf 𝕜 E') E' I' M'
- h₄ : LocallyFinite fun (i' : self.ι') => Set.range ↑(self.ψ i')
- lf_φ : LocallyFinite fun (i : IndexType self.N) => Set.range ↑(self.φ i)
Instances For
@[reducible, inline]
abbrev
LocalisationData.ψj
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
:
IndexType ld.N → OpenSmoothEmbedding (modelWithCornersSelf 𝕜 E') E' I' M'
Instances For
def
LocalisationData.ι
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
(L : LocalisationData I I' f)
:
The type indexing the source charts of the given localisation data.
Instances For
theorem
LocalisationData.iUnion_succ'
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners 𝕜 E H}
{M : Type u_4}
[TopologicalSpace M]
[ChartedSpace H M]
{E' : Type u_5}
[NormedAddCommGroup E']
[NormedSpace 𝕜 E']
{H' : Type u_6}
[TopologicalSpace H']
{I' : ModelWithCorners 𝕜 E' H'}
{M' : Type u_7}
[TopologicalSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
{β : Type u_8}
(s : ld.ι → Set β)
(i : IndexType ld.N)
:
theorem
nice_atlas_target
(E' : Type u_4)
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
(I' : ModelWithCorners ℝ E' H')
[I'.Boundaryless]
(M' : Type u_6)
[MetricSpace M']
[SigmaCompactSpace M']
[LocallyCompactSpace M']
[Nonempty M']
[ChartedSpace H' M']
[IsManifold I' (↑⊤) M']
:
∃ (n : ℕ) (ψ : IndexType n → OpenSmoothEmbedding (modelWithCornersSelf ℝ E') E' I' M'),
(LocallyFinite fun (i' : IndexType n) => Set.range ↑(ψ i')) ∧ ⋃ (i' : IndexType n), ↑(ψ i') '' Metric.ball 0 1 = Set.univ
def
targetCharts
(E' : Type u_4)
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
(I' : ModelWithCorners ℝ E' H')
[I'.Boundaryless]
(M' : Type u_6)
[MetricSpace M']
[SigmaCompactSpace M']
[LocallyCompactSpace M']
[Nonempty M']
[ChartedSpace H' M']
[IsManifold I' (↑⊤) M']
(i' : IndexType ⋯.choose)
:
OpenSmoothEmbedding (modelWithCornersSelf ℝ E') E' I' M'
A collection of charts on a manifold M'
which are smooth open embeddings with domain the whole
model space, and which cover the manifold when restricted in each case to the unit ball.
Equations
- targetCharts E' I' M' i' = ⋯.choose i'
Instances For
theorem
targetCharts_cover
(E' : Type u_4)
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
(I' : ModelWithCorners ℝ E' H')
[I'.Boundaryless]
(M' : Type u_6)
[MetricSpace M']
[SigmaCompactSpace M']
[LocallyCompactSpace M']
[Nonempty M']
[ChartedSpace H' M']
[IsManifold I' (↑⊤) M']
:
theorem
nice_atlas_domain
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{M : Type u_2}
[TopologicalSpace M]
[SigmaCompactSpace M]
[LocallyCompactSpace M]
[T2Space M]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners ℝ E H)
[I.Boundaryless]
[Nonempty M]
[ChartedSpace H M]
[IsManifold I (↑⊤) M]
(E' : Type u_4)
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
(I' : ModelWithCorners ℝ E' H')
[I'.Boundaryless]
{M' : Type u_6}
[MetricSpace M']
[SigmaCompactSpace M']
[LocallyCompactSpace M']
[Nonempty M']
[ChartedSpace H' M']
[IsManifold I' (↑⊤) M']
{f : M → M'}
(hf : Continuous f)
:
∃ (n : ℕ) (φ : IndexType n → OpenSmoothEmbedding (modelWithCornersSelf ℝ E) E I M),
(∀ (i : IndexType n),
∃ (i' : IndexType ⋯.choose), Set.range ↑(φ i) ⊆ f ⁻¹' (↑(targetCharts E' I' M' i') '' Metric.ball 0 1)) ∧ (LocallyFinite fun (i : IndexType n) => Set.range ↑(φ i)) ∧ ⋃ (i : IndexType n), ↑(φ i) '' Metric.ball 0 1 = Set.univ
def
stdLocalisationData
(E : Type u_1)
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{M : Type u_2}
[TopologicalSpace M]
[SigmaCompactSpace M]
[LocallyCompactSpace M]
[T2Space M]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners ℝ E H)
[I.Boundaryless]
[Nonempty M]
[ChartedSpace H M]
[IsManifold I (↑⊤) M]
(E' : Type u_4)
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
(I' : ModelWithCorners ℝ E' H')
[I'.Boundaryless]
{M' : Type u_6}
[MetricSpace M']
[SigmaCompactSpace M']
[LocallyCompactSpace M']
[Nonempty M']
[ChartedSpace H' M']
[IsManifold I' (↑⊤) M']
{f : M → M'}
(hf : Continuous f)
:
LocalisationData I I' f
Lemma lem:ex_localisation
Any continuous map between manifolds has some localisation data.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
localisation_stability
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{M : Type u_2}
[TopologicalSpace M]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners ℝ E H}
[ChartedSpace H M]
{E' : Type u_4}
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners ℝ E' H'}
{M' : Type u_6}
[MetricSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
:
Lemma lem:localisation_stability
.
def
LocalisationData.ε
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{M : Type u_2}
[TopologicalSpace M]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners ℝ E H}
[ChartedSpace H M]
{E' : Type u_4}
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners ℝ E' H'}
{M' : Type u_6}
[MetricSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
:
M → ℝ
Instances For
theorem
LocalisationData.ε_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{M : Type u_2}
[TopologicalSpace M]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners ℝ E H}
[ChartedSpace H M]
{E' : Type u_4}
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners ℝ E' H'}
{M' : Type u_6}
[MetricSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
(m : M)
:
theorem
LocalisationData.ε_cont
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{M : Type u_2}
[TopologicalSpace M]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners ℝ E H}
[ChartedSpace H M]
{E' : Type u_4}
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners ℝ E' H'}
{M' : Type u_6}
[MetricSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
:
Continuous ld.ε
theorem
LocalisationData.ε_spec
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{M : Type u_2}
[TopologicalSpace M]
{H : Type u_3}
[TopologicalSpace H]
{I : ModelWithCorners ℝ E H}
[ChartedSpace H M]
{E' : Type u_4}
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
{I' : ModelWithCorners ℝ E' H'}
{M' : Type u_6}
[MetricSpace M']
[ChartedSpace H' M']
{f : M → M'}
(ld : LocalisationData I I' f)
(g : M → M')
(_hg : ∀ (m : M), dist (g m) (f m) < ld.ε m)
(i : ld.ι)
:
theorem
exists_stability_dist
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{M : Type u_2}
[TopologicalSpace M]
[SigmaCompactSpace M]
[LocallyCompactSpace M]
[T2Space M]
{H : Type u_3}
[TopologicalSpace H]
(I : ModelWithCorners ℝ E H)
[I.Boundaryless]
[Nonempty M]
[ChartedSpace H M]
[IsManifold I (↑⊤) M]
{E' : Type u_4}
[NormedAddCommGroup E']
[NormedSpace ℝ E']
[FiniteDimensional ℝ E']
{H' : Type u_5}
[TopologicalSpace H']
(I' : ModelWithCorners ℝ E' H')
[I'.Boundaryless]
{M' : Type u_6}
[MetricSpace M']
[SigmaCompactSpace M']
[LocallyCompactSpace M']
[Nonempty M']
[ChartedSpace H' M']
[IsManifold I' (↑⊤) M']
{f : M → M'}
(hf : Continuous f)
:
∃ (ε : M → ℝ),
(∀ (m : M), 0 < ε m) ∧ Continuous ε ∧ ∀ (x : M),
∃ (φ : OpenSmoothEmbedding (modelWithCornersSelf ℝ E) E I M) (ψ :
OpenSmoothEmbedding (modelWithCornersSelf ℝ E') E' I' M'),
x ∈ Set.range ↑φ ∧ ∀ (g : M → M'), (∀ (m : M), dist (g m) (f m) < ε m) → Set.range (g ∘ ↑φ) ⊆ Set.range ↑ψ