Documentation

SphereEversion.Global.SmoothEmbedding

structure OpenSmoothEmbedding {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] :
Type (max u_4 u_7)
Instances For
    instance instCoeFunOpenSmoothEmbeddingForall {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (M' : Type u_7) [TopologicalSpace M'] [ChartedSpace H' M'] :
    CoeFun (OpenSmoothEmbedding I M I' M') fun (x : OpenSmoothEmbedding I M I' M') => MM'
    Equations
    @[simp]
    theorem OpenSmoothEmbedding.coe_mk {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : MM') (g : M'M) (h₁ : ∀ {x : M}, g (f x) = x) (h₂ : IsOpen (Set.range f)) (h₃ : ContMDiff I I' (↑) f) (h₄ : ContMDiffOn I' I (↑) g (Set.range f)) :
    { toFun := f, invFun := g, left_inv' := h₁, isOpen_range := h₂, contMDiff_to := h₃, contMDiffOn_inv := h₄ } = f
    @[simp]
    theorem OpenSmoothEmbedding.left_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') (x : M) :
    f.invFun (f x) = x
    @[simp]
    theorem OpenSmoothEmbedding.invFun_comp_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
    @[simp]
    theorem OpenSmoothEmbedding.right_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') {y : M'} (hy : y Set.range f) :
    f (f.invFun y) = y
    theorem OpenSmoothEmbedding.contMDiffAt_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') {y : M'} (hy : y Set.range f) :
    ContMDiffAt I' I (↑) f.invFun y
    theorem OpenSmoothEmbedding.contMDiffAt_inv' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') {x : M} :
    ContMDiffAt I' I (↑) f.invFun (f x)
    theorem OpenSmoothEmbedding.leftInverse {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
    theorem OpenSmoothEmbedding.injective {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
    theorem OpenSmoothEmbedding.continuous {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
    theorem OpenSmoothEmbedding.isOpenMap {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
    theorem OpenSmoothEmbedding.coe_comp_invFun_eventuallyEq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') (x : M) :
    f f.invFun =ᶠ[nhds (f x)] _root_.id
    def OpenSmoothEmbedding.fderiv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') (x : M) :
    TangentSpace I x ≃L[𝕜] TangentSpace I' (f x)
    Equations
    Instances For
      @[simp]
      theorem OpenSmoothEmbedding.fderiv_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') (x : M) :
      (f.fderiv x) = mfderiv I I' (↑f) x
      @[simp]
      theorem OpenSmoothEmbedding.fderiv_symm_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') (x : M) :
      (f.fderiv x).symm = mfderiv I' I f.invFun (f x)
      theorem OpenSmoothEmbedding.fderiv_symm_coe' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') {x : M'} (hx : x Set.range f) :
      (f.fderiv (f.invFun x)).symm = mfderiv I' I f.invFun x
      theorem OpenSmoothEmbedding.isOpenEmbedding {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
      theorem OpenSmoothEmbedding.isInducing {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') :
      theorem OpenSmoothEmbedding.forall_near' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') {P : MProp} {A : Set M'} (h : ∀ᶠ (m : M) in nhdsSet (f ⁻¹' A), P m) :
      ∀ᶠ (m' : M') in nhdsSet (A Set.range f), ∀ (m : M), m' = f mP m
      theorem OpenSmoothEmbedding.eventually_nhdsSet_mono {α : Type u_8} [TopologicalSpace α] {s t : Set α} {P : αProp} (h : ∀ᶠ (x : α) in nhdsSet t, P x) (h' : s t) :
      ∀ᶠ (x : α) in nhdsSet s, P x
      theorem OpenSmoothEmbedding.forall_near {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : OpenSmoothEmbedding I M I' M') [T2Space M'] {P : MProp} {P' : M'Prop} {K : Set M} (hK : IsCompact K) {A : Set M'} (hP : ∀ᶠ (m : M) in nhdsSet (f ⁻¹' A), P m) (hP' : ∀ᶠ (m' : M') in nhdsSet A, m'f '' KP' m') (hPP' : ∀ (m : M), P mP' (f m)) :
      ∀ᶠ (m' : M') in nhdsSet A, P' m'
      def OpenSmoothEmbedding.id {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :

      The identity map is a smooth open embedding.

      Equations
      • OpenSmoothEmbedding.id I M = { toFun := id, invFun := id, left_inv' := , isOpen_range := , contMDiff_to := , contMDiffOn_inv := }
      Instances For
        @[simp]
        theorem OpenSmoothEmbedding.id_invFun {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] (a : M) :
        (id I M).invFun a = _root_.id a
        @[simp]
        theorem OpenSmoothEmbedding.id_toFun {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] (a : M) :
        (id I M) a = _root_.id a
        Equations
        • e.toOpenSmoothEmbedding = { toFun := e, invFun := e.symm, left_inv' := , isOpen_range := , contMDiff_to := , contMDiffOn_inv := }
        Instances For
          @[simp]
          theorem ContinuousLinearEquiv.toOpenSmoothEmbedding_invFun {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] (e : E ≃L[𝕜] E') (a : E') :
          @[simp]
          theorem ContinuousLinearEquiv.toOpenSmoothEmbedding_toFun {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] (e : E ≃L[𝕜] E') (a : E) :
          def openSmoothEmbOfDiffeoSubsetChartTarget {F : Type u_1} {H : Type u_2} (M : Type u) [NormedAddCommGroup F] [NormedSpace F] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (IF : ModelWithCorners F H) [IsManifold IF (↑) M] (x : M) {f : PartialHomeomorph F F} (hf₁ : f.source = Set.univ) (hf₂ : 𝒞 f) (hf₃ : ContDiffOn (↑) (↑f.symm) f.target) (hf₄ : Set.range f IF '' (chartAt H x).target) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem coe_openSmoothEmbOfDiffeoSubsetChartTarget {F : Type u_1} {H : Type u_2} (M : Type u) [NormedAddCommGroup F] [NormedSpace F] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (IF : ModelWithCorners F H) [IsManifold IF (↑) M] (x : M) {f : PartialHomeomorph F F} (hf₁ : f.source = Set.univ) (hf₂ : 𝒞 f) (hf₃ : ContDiffOn (↑) (↑f.symm) f.target) (hf₄ : Set.range f IF '' (chartAt H x).target) :
            (openSmoothEmbOfDiffeoSubsetChartTarget M IF x hf₁ hf₂ hf₃ hf₄) = (extChartAt IF x).symm f
            theorem range_openSmoothEmbOfDiffeoSubsetChartTarget {F : Type u_1} {H : Type u_2} (M : Type u) [NormedAddCommGroup F] [NormedSpace F] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (IF : ModelWithCorners F H) [IsManifold IF (↑) M] (x : M) {f : PartialHomeomorph F F} (hf₁ : f.source = Set.univ) (hf₂ : 𝒞 f) (hf₃ : ContDiffOn (↑) (↑f.symm) f.target) (hf₄ : Set.range f IF '' (chartAt H x).target) :
            Set.range (openSmoothEmbOfDiffeoSubsetChartTarget M IF x hf₁ hf₂ hf₃ hf₄) = (extChartAt IF x).symm '' Set.range f
            theorem nice_atlas' (F : Type u_1) {H : Type u_2} {M : Type u} [NormedAddCommGroup F] [NormedSpace F] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (IF : ModelWithCorners F H) [IsManifold IF (↑) M] [IF.Boundaryless] [FiniteDimensional F] [T2Space M] [LocallyCompactSpace M] [SigmaCompactSpace M] {ι : Type u_3} {s : ιSet M} (s_op : ∀ (j : ι), IsOpen (s j)) (cov : ⋃ (j : ι), s j = Set.univ) (U : Set F) (hU₁ : 0 U) (hU₂ : IsOpen U) :
            ∃ (ι' : Type u) (t : Set ι') (φ : tOpenSmoothEmbedding (modelWithCornersSelf F) F IF M), t.Countable (∀ (i : t), ∃ (j : ι), Set.range (φ i) s j) (LocallyFinite fun (i : t) => Set.range (φ i)) ⋃ (i : t), (φ i) '' U = Set.univ
            theorem nice_atlas (F : Type u_1) {H : Type u_2} {M : Type u} [NormedAddCommGroup F] [NormedSpace F] [TopologicalSpace H] [TopologicalSpace M] [ChartedSpace H M] (IF : ModelWithCorners F H) [IsManifold IF (↑) M] [IF.Boundaryless] [FiniteDimensional F] [T2Space M] [LocallyCompactSpace M] [SigmaCompactSpace M] [Nonempty M] {ι : Type u_3} {s : ιSet M} (s_op : ∀ (j : ι), IsOpen (s j)) (cov : ⋃ (j : ι), s j = Set.univ) :
            ∃ (n : ) (φ : IndexType nOpenSmoothEmbedding (modelWithCornersSelf F) F IF M), (∀ (i : IndexType n), ∃ (j : ι), Set.range (φ i) s j) (LocallyFinite fun (i : IndexType n) => Set.range (φ i)) ⋃ (i : IndexType n), (φ i) '' Metric.ball 0 1 = Set.univ
            def OpenSmoothEmbedding.update {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [TopologicalSpace Y] [ChartedSpace HY Y] [TopologicalSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) (f : MN) (g : XY) (m : M) :
            N

            This is definition def:update in the blueprint.

            Equations
            Instances For
              @[simp]
              theorem OpenSmoothEmbedding.update_of_nmem_range {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [TopologicalSpace Y] [ChartedSpace HY Y] [TopologicalSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) (f : MN) (g : XY) {m : M} (hm : mSet.range φ) :
              φ.update ψ f g m = f m
              @[simp]
              theorem OpenSmoothEmbedding.update_of_mem_range {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [TopologicalSpace Y] [ChartedSpace HY Y] [TopologicalSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) (f : MN) (g : XY) {m : M} (hm : m Set.range φ) :
              φ.update ψ f g m = ψ (g (φ.invFun m))
              theorem OpenSmoothEmbedding.update_apply_embedding {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [TopologicalSpace Y] [ChartedSpace HY Y] [TopologicalSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) (f : MN) (g : XY) (x : X) :
              φ.update ψ f g (φ x) = ψ (g x)
              theorem OpenSmoothEmbedding.nice_update_of_eq_outside_compact_aux {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [TopologicalSpace Y] [ChartedSpace HY Y] [TopologicalSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) (f : MN) {K : Set X} (g : XY) (hg : xK, f (φ x) = ψ (g x)) {m : M} (hm : mφ '' K) :
              φ.update ψ f g m = f m
              theorem OpenSmoothEmbedding.smooth_update {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {EM' : Type u_6} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} {M' : Type u_11} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EM'] [NormedSpace 𝕜 EM'] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HM' : Type u_15} [TopologicalSpace HM'] {IM' : ModelWithCorners 𝕜 EM' HM'} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [TopologicalSpace M'] [ChartedSpace HM' M'] [TopologicalSpace Y] [ChartedSpace HY Y] [TopologicalSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) (f : M'MN) (g : M'XY) {k : M'M} {K : Set X} (hK : IsClosed (φ '' K)) (hf : ContMDiff (IM'.prod IM) IN (↑) (Function.uncurry f)) (hg : ContMDiff (IM'.prod IX) IY (↑) (Function.uncurry g)) (hk : ContMDiff IM' IM (↑) k) (hg' : ∀ (y : M'), xK, f y (φ x) = ψ (g y x)) :
              ContMDiff IM' IN fun (x : M') => φ.update ψ (f x) (g x) (k x)

              This is lemma lem:smooth_updating in the blueprint.

              theorem OpenSmoothEmbedding.dist_update {𝕜 : Type u_1} {EX : Type u_2} {EM : Type u_3} {EY : Type u_4} {EN : Type u_5} {X : Type u_7} {M : Type u_8} {Y : Type u_9} {N : Type u_10} [NontriviallyNormedField 𝕜] [NormedAddCommGroup EX] [NormedSpace 𝕜 EX] [NormedAddCommGroup EM] [NormedSpace 𝕜 EM] [NormedAddCommGroup EY] [NormedSpace 𝕜 EY] [NormedAddCommGroup EN] [NormedSpace 𝕜 EN] {HX : Type u_12} [TopologicalSpace HX] {IX : ModelWithCorners 𝕜 EX HX} {HY : Type u_13} [TopologicalSpace HY] {IY : ModelWithCorners 𝕜 EY HY} {HM : Type u_14} [TopologicalSpace HM] {IM : ModelWithCorners 𝕜 EM HM} {HN : Type u_16} [TopologicalSpace HN] {IN : ModelWithCorners 𝕜 EN HN} [TopologicalSpace X] [ChartedSpace HX X] [TopologicalSpace M] [ChartedSpace HM M] [MetricSpace Y] [ChartedSpace HY Y] [MetricSpace N] [ChartedSpace HN N] (φ : OpenSmoothEmbedding IX X IM M) (ψ : OpenSmoothEmbedding IY Y IN N) [ProperSpace Y] {K : Set X} (hK : IsCompact K) {P : Type u_17} [MetricSpace P] {KP : Set P} (hKP : IsCompact KP) (f : PMN) (hf : Continuous f) (hf' : ∀ (p : P), f p '' Set.range φ Set.range ψ) {ε : M} ( : ∀ (m : M), 0 < ε m) (hε' : Continuous ε) :
              η > 0, ∀ (g : PXY), pKP, p'KP, xK, dist (g p' x) (ψ.invFun (f p (φ x))) < ηdist (φ.update ψ (f p') (g p') (φ x)) (f p (φ x)) < ε (φ x)

              This is lem:dist_updating in the blueprint.