theorem
fderiv_prod_left
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{xโ : E}
{yโ : F}
:
theorem
fderiv_prod_right
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{xโ : E}
{yโ : F}
:
theorem
HasFDerivAt.partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{ฯ' : E ร F โL[๐] G}
{eโ : E}
{fโ : F}
(h : HasFDerivAt (Function.uncurry ฯ) ฯ' (eโ, fโ))
:
HasFDerivAt (fun (e : E) => ฯ e fโ) (ฯ'.comp (ContinuousLinearMap.inl ๐ E F)) eโ
theorem
HasFDerivAt.partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{ฯ' : E ร F โL[๐] G}
{eโ : E}
{fโ : F}
(h : HasFDerivAt (Function.uncurry ฯ) ฯ' (eโ, fโ))
:
HasFDerivAt (fun (f : F) => ฯ eโ f) (ฯ'.comp (ContinuousLinearMap.inr ๐ E F)) fโ
theorem
fderiv_prod_eq_add
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
{p : E ร F}
(hf : DifferentiableAt ๐ f p)
:
def
partialFDerivFst
(๐ : Type u_1)
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{F : Type u_8}
(ฯ : E โ F โ G)
:
The first partial derivative of a binary function.
Equations
- partialFDerivFst ๐ ฯ eโ fโ = fderiv ๐ (fun (e : E) => ฯ e fโ) eโ
Instances For
def
partialFDerivSnd
(๐ : Type u_1)
[NontriviallyNormedField ๐]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{E : Type u_8}
(ฯ : E โ F โ G)
:
The second partial derivative of a binary function.
Equations
- partialFDerivSnd ๐ ฯ eโ fโ = fderiv ๐ (fun (f : F) => ฯ eโ f) fโ
Instances For
theorem
fderiv_partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{ฯ' : E ร F โL[๐] G}
{eโ : E}
{fโ : F}
(h : HasFDerivAt (Function.uncurry ฯ) ฯ' (eโ, fโ))
:
theorem
fderiv_partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{ฯ' : E ร F โL[๐] G}
{eโ : E}
{fโ : F}
(h : HasFDerivAt (Function.uncurry ฯ) ฯ' (eโ, fโ))
:
theorem
DifferentiableAt.hasFDerivAt_partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{eโ : E}
{fโ : F}
(h : DifferentiableAt ๐ (Function.uncurry ฯ) (eโ, fโ))
:
HasFDerivAt (fun (e : E) => ฯ e fโ) (partialFDerivFst ๐ ฯ eโ fโ) eโ
theorem
DifferentiableAt.hasFDerivAt_partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{eโ : E}
{fโ : F}
(h : DifferentiableAt ๐ (Function.uncurry ฯ) (eโ, fโ))
:
HasFDerivAt (fun (f : F) => ฯ eโ f) (partialFDerivSnd ๐ ฯ eโ fโ) fโ
theorem
ContDiff.partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โโ}
(h : ContDiff ๐ (โn) (Function.uncurry ฯ))
(fโ : F)
:
ContDiff ๐ โn fun (e : E) => ฯ e fโ
theorem
ContDiff.partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โโ}
(h : ContDiff ๐ (โn) (Function.uncurry ฯ))
(eโ : E)
:
ContDiff ๐ โn fun (f : F) => ฯ eโ f
def
ContinuousLinearMap.compRightL
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : E โL[๐] F)
:
Precomposition by a continuous linear map as a continuous linear map between spaces of continuous linear maps.
Equations
- ฯ.compRightL = ContinuousLinearMap.precomp G ฯ
Instances For
def
ContinuousLinearMap.compLeftL
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : F โL[๐] G)
:
Postcomposition by a continuous linear map as a continuous linear map between spaces of continuous linear maps.
Equations
- ฯ.compLeftL = ContinuousLinearMap.postcomp E ฯ
Instances For
theorem
Differentiable.fderiv_partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
(hF : Differentiable ๐ (Function.uncurry ฯ))
:
โฟ(partialFDerivFst ๐ ฯ) = โ(ContinuousLinearMap.precomp G (ContinuousLinearMap.inl ๐ E F)) โ fderiv ๐ (Function.uncurry ฯ)
theorem
Differentiable.fderiv_partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
(hF : Differentiable ๐ (Function.uncurry ฯ))
:
โฟ(partialFDerivSnd ๐ ฯ) = โ(ContinuousLinearMap.precomp G (ContinuousLinearMap.inr ๐ E F)) โ fderiv ๐ (Function.uncurry ฯ)
def
partialDerivFst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{F : Type u_6}
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : ๐ โ F โ G)
:
๐ โ F โ G
The first partial derivative of ฯ : ๐ โ F โ G
seen as a function from ๐ โ F โ G
Equations
- partialDerivFst ฯ k f = (partialFDerivFst ๐ ฯ k f) 1
Instances For
def
partialDerivSnd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : E โ ๐ โ G)
:
E โ ๐ โ G
The second partial derivative of ฯ : E โ ๐ โ G
seen as a function from E โ ๐ โ G
Equations
- partialDerivSnd ฯ e k = (partialFDerivSnd ๐ ฯ e k) 1
Instances For
theorem
partialFDerivFst_eq_smulRight
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{F : Type u_6}
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : ๐ โ F โ G)
(k : ๐)
(f : F)
:
@[simp]
theorem
partialFDerivFst_one
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{F : Type u_6}
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : ๐ โ F โ G)
(k : ๐)
(f : F)
:
theorem
partialFDerivSnd_eq_smulRight
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : E โ ๐ โ G)
(e : E)
(k : ๐)
:
theorem
partialFDerivSnd_one
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(ฯ : E โ ๐ โ G)
(e : E)
(k : ๐)
:
theorem
WithTop.le_mul_self
{ฮฑ : Type u_8}
[OrderedCommMonoid ฮฑ]
[CanonicallyOrderedMul ฮฑ]
(n m : ฮฑ)
:
theorem
WithTop.le_add_self
{ฮฑ : Type u_8}
[OrderedAddCommMonoid ฮฑ]
[CanonicallyOrderedAdd ฮฑ]
(n m : ฮฑ)
:
theorem
WithTop.le_self_mul
{ฮฑ : Type u_8}
[OrderedCommMonoid ฮฑ]
[CanonicallyOrderedMul ฮฑ]
(n m : ฮฑ)
:
theorem
WithTop.le_self_add
{ฮฑ : Type u_8}
[OrderedAddCommMonoid ฮฑ]
[CanonicallyOrderedAdd ฮฑ]
(n m : ฮฑ)
:
theorem
ContDiff.contDiff_partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โ}
(hF : ContDiff ๐ (โn + 1) (Function.uncurry ฯ))
:
ContDiff ๐ โn โฟ(partialFDerivFst ๐ ฯ)
theorem
ContDiff.contDiff_partial_fst_apply
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โ}
(hF : ContDiff ๐ (โn + 1) (Function.uncurry ฯ))
{x : E}
:
ContDiff ๐ โn โฟfun (x' : E) (y : F) => (partialFDerivFst ๐ ฯ x' y) x
theorem
ContDiff.continuous_partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โ}
(h : ContDiff ๐ (โโ(n + 1)) (Function.uncurry ฯ))
:
Continuous โฟ(partialFDerivFst ๐ ฯ)
theorem
ContDiff.contDiff_top_partial_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
(hF : ContDiff ๐ (โโค) (Function.uncurry ฯ))
:
ContDiff ๐ โโค โฟ(partialFDerivFst ๐ ฯ)
theorem
ContDiff.contDiff_partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โ}
(hF : ContDiff ๐ (โn + 1) (Function.uncurry ฯ))
:
ContDiff ๐ โn โฟ(partialFDerivSnd ๐ ฯ)
theorem
ContDiff.contDiff_partial_snd_apply
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โ}
(hF : ContDiff ๐ (โn + 1) (Function.uncurry ฯ))
{y : F}
:
ContDiff ๐ โn โฟfun (x : E) (y' : F) => (partialFDerivSnd ๐ ฯ x y') y
theorem
ContDiff.continuous_partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
{n : โ}
(h : ContDiff ๐ (โโ(n + 1)) (Function.uncurry ฯ))
:
Continuous โฟ(partialFDerivSnd ๐ ฯ)
theorem
ContDiff.contDiff_top_partial_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_6}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_7}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{ฯ : E โ F โ G}
(hF : ContDiff ๐ (โโค) (Function.uncurry ฯ))
:
ContDiff ๐ โโค โฟ(partialFDerivSnd ๐ ฯ)
theorem
ContDiff.lipschitzOnWith
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{F : Type u_2}
[NormedAddCommGroup F]
[NormedSpace โ F]
{s : Set E}
{f : E โ F}
{n : WithTop โโ}
(hf : ContDiff โ n f)
(hn : 1 โค n)
(hs : Convex โ s)
(hs' : IsCompact s)
:
โ (K : NNReal), LipschitzOnWith K f s