Documentation

SphereEversion.ToMathlib.Analysis.Calculus

theorem fderiv_prod_left {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {xโ‚€ : E} {yโ‚€ : F} :
fderiv ๐•œ (fun (x : E) => (x, yโ‚€)) xโ‚€ = ContinuousLinearMap.inl ๐•œ E F
theorem fderiv_prod_right {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {xโ‚€ : E} {yโ‚€ : F} :
fderiv ๐•œ (fun (y : F) => (xโ‚€, y)) yโ‚€ = ContinuousLinearMap.inr ๐•œ E F
theorem HasFDerivAt.partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {ฯ†' : E ร— F โ†’L[๐•œ] G} {eโ‚€ : E} {fโ‚€ : F} (h : HasFDerivAt (Function.uncurry ฯ†) ฯ†' (eโ‚€, fโ‚€)) :
HasFDerivAt (fun (e : E) => ฯ† e fโ‚€) (ฯ†'.comp (ContinuousLinearMap.inl ๐•œ E F)) eโ‚€
theorem HasFDerivAt.partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {ฯ†' : E ร— F โ†’L[๐•œ] G} {eโ‚€ : E} {fโ‚€ : F} (h : HasFDerivAt (Function.uncurry ฯ†) ฯ†' (eโ‚€, fโ‚€)) :
HasFDerivAt (fun (f : F) => ฯ† eโ‚€ f) (ฯ†'.comp (ContinuousLinearMap.inr ๐•œ E F)) fโ‚€
theorem fderiv_prod_eq_add {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} {p : E ร— F} (hf : DifferentiableAt ๐•œ f p) :
fderiv ๐•œ f p = fderiv ๐•œ (fun (z : E ร— F) => f (z.1, p.2)) p + fderiv ๐•œ (fun (z : E ร— F) => f (p.1, z.2)) p
def partialFDerivFst (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {F : Type u_8} (ฯ† : E โ†’ F โ†’ G) :
E โ†’ F โ†’ E โ†’L[๐•œ] G

The first partial derivative of a binary function.

Equations
Instances For
    def partialFDerivSnd (๐•œ : Type u_1) [NontriviallyNormedField ๐•œ] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {E : Type u_8} (ฯ† : E โ†’ F โ†’ G) :
    E โ†’ F โ†’ F โ†’L[๐•œ] G

    The second partial derivative of a binary function.

    Equations
    Instances For
      theorem fderiv_partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {ฯ†' : E ร— F โ†’L[๐•œ] G} {eโ‚€ : E} {fโ‚€ : F} (h : HasFDerivAt (Function.uncurry ฯ†) ฯ†' (eโ‚€, fโ‚€)) :
      partialFDerivFst ๐•œ ฯ† eโ‚€ fโ‚€ = ฯ†'.comp (ContinuousLinearMap.inl ๐•œ E F)
      theorem fderiv_partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {ฯ†' : E ร— F โ†’L[๐•œ] G} {eโ‚€ : E} {fโ‚€ : F} (h : HasFDerivAt (Function.uncurry ฯ†) ฯ†' (eโ‚€, fโ‚€)) :
      partialFDerivSnd ๐•œ ฯ† eโ‚€ fโ‚€ = ฯ†'.comp (ContinuousLinearMap.inr ๐•œ E F)
      theorem DifferentiableAt.hasFDerivAt_partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {eโ‚€ : E} {fโ‚€ : F} (h : DifferentiableAt ๐•œ (Function.uncurry ฯ†) (eโ‚€, fโ‚€)) :
      HasFDerivAt (fun (e : E) => ฯ† e fโ‚€) (partialFDerivFst ๐•œ ฯ† eโ‚€ fโ‚€) eโ‚€
      theorem DifferentiableAt.hasFDerivAt_partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {eโ‚€ : E} {fโ‚€ : F} (h : DifferentiableAt ๐•œ (Function.uncurry ฯ†) (eโ‚€, fโ‚€)) :
      HasFDerivAt (fun (f : F) => ฯ† eโ‚€ f) (partialFDerivSnd ๐•œ ฯ† eโ‚€ fโ‚€) fโ‚€
      theorem ContDiff.partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•โˆž} (h : ContDiff ๐•œ (โ†‘n) (Function.uncurry ฯ†)) (fโ‚€ : F) :
      ContDiff ๐•œ โ†‘n fun (e : E) => ฯ† e fโ‚€
      theorem ContDiff.partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•โˆž} (h : ContDiff ๐•œ (โ†‘n) (Function.uncurry ฯ†)) (eโ‚€ : E) :
      ContDiff ๐•œ โ†‘n fun (f : F) => ฯ† eโ‚€ f
      def ContinuousLinearMap.compRightL {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : E โ†’L[๐•œ] F) :
      (F โ†’L[๐•œ] G) โ†’L[๐•œ] E โ†’L[๐•œ] G

      Precomposition by a continuous linear map as a continuous linear map between spaces of continuous linear maps.

      Equations
      Instances For
        def ContinuousLinearMap.compLeftL {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : F โ†’L[๐•œ] G) :
        (E โ†’L[๐•œ] F) โ†’L[๐•œ] E โ†’L[๐•œ] G

        Postcomposition by a continuous linear map as a continuous linear map between spaces of continuous linear maps.

        Equations
        Instances For
          theorem Differentiable.fderiv_partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} (hF : Differentiable ๐•œ (Function.uncurry ฯ†)) :
          theorem Differentiable.fderiv_partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} (hF : Differentiable ๐•œ (Function.uncurry ฯ†)) :
          def partialDerivFst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type u_6} {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : ๐•œ โ†’ F โ†’ G) :
          ๐•œ โ†’ F โ†’ G

          The first partial derivative of ฯ† : ๐•œ โ†’ F โ†’ G seen as a function from ๐•œ โ†’ F โ†’ G

          Equations
          Instances For
            def partialDerivSnd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : E โ†’ ๐•œ โ†’ G) :
            E โ†’ ๐•œ โ†’ G

            The second partial derivative of ฯ† : E โ†’ ๐•œ โ†’ G seen as a function from E โ†’ ๐•œ โ†’ G

            Equations
            Instances For
              theorem partialFDerivFst_eq_smulRight {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type u_6} {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : ๐•œ โ†’ F โ†’ G) (k : ๐•œ) (f : F) :
              @[simp]
              theorem partialFDerivFst_one {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {F : Type u_6} {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : ๐•œ โ†’ F โ†’ G) (k : ๐•œ) (f : F) :
              (partialFDerivFst ๐•œ ฯ† k f) 1 = partialDerivFst ฯ† k f
              theorem partialFDerivSnd_eq_smulRight {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : E โ†’ ๐•œ โ†’ G) (e : E) (k : ๐•œ) :
              theorem partialFDerivSnd_one {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (ฯ† : E โ†’ ๐•œ โ†’ G) (e : E) (k : ๐•œ) :
              (partialFDerivSnd ๐•œ ฯ† e k) 1 = partialDerivSnd ฯ† e k
              theorem WithTop.le_mul_self {ฮฑ : Type u_8} [OrderedCommMonoid ฮฑ] [CanonicallyOrderedMul ฮฑ] (n m : ฮฑ) :
              โ†‘n โ‰ค โ†‘(m * n)
              theorem WithTop.le_add_self {ฮฑ : Type u_8} [OrderedAddCommMonoid ฮฑ] [CanonicallyOrderedAdd ฮฑ] (n m : ฮฑ) :
              โ†‘n โ‰ค โ†‘(m + n)
              theorem WithTop.le_self_mul {ฮฑ : Type u_8} [OrderedCommMonoid ฮฑ] [CanonicallyOrderedMul ฮฑ] (n m : ฮฑ) :
              โ†‘n โ‰ค โ†‘(n * m)
              theorem WithTop.le_self_add {ฮฑ : Type u_8} [OrderedAddCommMonoid ฮฑ] [CanonicallyOrderedAdd ฮฑ] (n m : ฮฑ) :
              โ†‘n โ‰ค โ†‘(n + m)
              theorem ContDiff.contDiff_partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•} (hF : ContDiff ๐•œ (โ†‘n + 1) (Function.uncurry ฯ†)) :
              ContDiff ๐•œ โ†‘n โ†ฟ(partialFDerivFst ๐•œ ฯ†)
              theorem ContDiff.contDiff_partial_fst_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•} (hF : ContDiff ๐•œ (โ†‘n + 1) (Function.uncurry ฯ†)) {x : E} :
              ContDiff ๐•œ โ†‘n โ†ฟfun (x' : E) (y : F) => (partialFDerivFst ๐•œ ฯ† x' y) x
              theorem ContDiff.continuous_partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•} (h : ContDiff ๐•œ (โ†‘โ†‘(n + 1)) (Function.uncurry ฯ†)) :
              theorem ContDiff.contDiff_top_partial_fst {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} (hF : ContDiff ๐•œ (โ†‘โŠค) (Function.uncurry ฯ†)) :
              ContDiff ๐•œ โ†‘โŠค โ†ฟ(partialFDerivFst ๐•œ ฯ†)
              theorem ContDiff.contDiff_partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•} (hF : ContDiff ๐•œ (โ†‘n + 1) (Function.uncurry ฯ†)) :
              ContDiff ๐•œ โ†‘n โ†ฟ(partialFDerivSnd ๐•œ ฯ†)
              theorem ContDiff.contDiff_partial_snd_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•} (hF : ContDiff ๐•œ (โ†‘n + 1) (Function.uncurry ฯ†)) {y : F} :
              ContDiff ๐•œ โ†‘n โ†ฟfun (x : E) (y' : F) => (partialFDerivSnd ๐•œ ฯ† x y') y
              theorem ContDiff.continuous_partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} {n : โ„•} (h : ContDiff ๐•œ (โ†‘โ†‘(n + 1)) (Function.uncurry ฯ†)) :
              theorem ContDiff.contDiff_top_partial_snd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_7} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {ฯ† : E โ†’ F โ†’ G} (hF : ContDiff ๐•œ (โ†‘โŠค) (Function.uncurry ฯ†)) :
              ContDiff ๐•œ โ†‘โŠค โ†ฟ(partialFDerivSnd ๐•œ ฯ†)
              theorem ContDiff.lipschitzOnWith {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] {s : Set E} {f : E โ†’ F} {n : WithTop โ„•โˆž} (hf : ContDiff โ„ n f) (hn : 1 โ‰ค n) (hs : Convex โ„ s) (hs' : IsCompact s) :
              โˆƒ (K : NNReal), LipschitzOnWith K f s
              theorem const_mul_one_div_lt {ฮต : โ„} (ฮต_pos : 0 < ฮต) (C : โ„) :