Documentation

SphereEversion.ToMathlib.Equivariant

structure EquivariantMap :

Equivariant maps from to itself are functions f : ℝ → ℝ with f (t + 1) = f t + 1.

Instances For
    theorem EquivariantMap.eqv (φ : EquivariantMap) (t : ) :
    φ.toFun (t + 1) = φ.toFun t + 1
    theorem EquivariantMap.sub_one (φ : EquivariantMap) (t : ) :
    φ.toFun (t - 1) = φ.toFun t - 1
    theorem EquivariantMap.add_coe (φ : EquivariantMap) (t : ) (n : ) :
    φ.toFun (t + n) = φ.toFun t + n
    theorem EquivariantMap.coe_int (φ : EquivariantMap) (n : ) :
    φ.toFun n = φ.toFun 0 + n
    theorem EquivariantMap.not_bounded_above (φ : EquivariantMap) (y : ) :
    ∃ (x : ), y φ.toFun x
    theorem EquivariantMap.not_bounded_below (φ : EquivariantMap) (y : ) :
    ∃ (x : ), φ.toFun x y
    @[simp]
    theorem EquivariantMap.coe_mk (f : ) {eqv : ∀ (t : ), f (t + 1) = f t + 1} :
    { toFun := f, eqv' := eqv }.toFun = f

    continuous equivariant reparametrization that is locally constant around 0. It is piecewise linear, connecting (0, 0), (1/4, 0) and (3/4, 1) and (1, 1), and extended to an equivariant function.

    Equations
    Instances For
      theorem linearReparam_eq_zero {t : } (h1 : -4⁻¹ t) (h2 : t 4⁻¹) :
      theorem linearReparam_eq_zero' {t : } (h1 : 0 t) (h2 : t 4⁻¹) :
      theorem linearReparam_eq_one {t : } (h1 : 3 / 4 t) (h2 : t 5 / 4) :
      theorem linearReparam_eq_one' {t : } (h1 : 3 / 4 t) (h2 : t 1) :
      theorem linearReparam_le_one {t : } (ht : t 5 / 4) :
      theorem one_le_linearReparam {t : } (ht : 3 / 4 t) :
      structure EquivariantEquivextends :

      A bijection from to itself that fixes 0 and is equivariant with respect to the action by translations.

      Morally, these are bijections of the circle ℝ / ℤ to itself.

      Instances For

        Forgetting its bijective properties, an equivariant_equiv can be regarded as an equivariant_map.

        Equations
        Instances For
          theorem EquivariantEquiv.eqv (φ : EquivariantEquiv) (t : ) :
          φ.toFun (t + 1) = φ.toFun t + 1
          @[simp]
          theorem EquivariantEquiv.coe_mk (f : ) (h₀ : f.toFun 0 = 0) (h₁ : ∀ (t : ), f.toFun (t + 1) = f.toFun t + 1) :
          { toEquiv := f, map_zero' := h₀, eqv' := h₁ }.toFun = f

          The inverse of an equivariant_equiv is an equivariant_equiv.

          Equations
          • e.symm = { toEquiv := e.symm, map_zero' := , eqv' := }
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            theorem EquivariantEquiv.ext {e₁ e₂ : EquivariantEquiv} (h : ∀ (x : ), e₁.toFun x = e₂.toFun x) :
            e₁ = e₂