We could weaken FiniteDimensional ℝ H
with SecondCountable (H →L[ℝ] E)
if needed,
but that is less convenient to work with.
theorem
hasFDerivAt_parametric_primitive_of_lip'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type u_2}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
(F : H → ℝ → E)
(F' : ℝ → H →L[ℝ] E)
{x₀ : H}
{G' : H →L[ℝ] E}
{bound : ℝ → ℝ}
{s : H → ℝ}
{ε : ℝ}
(ε_pos : 0 < ε)
{a a₀ b₀ : ℝ}
{s' : H →L[ℝ] ℝ}
(ha : a ∈ Set.Ioo a₀ b₀)
(hsx₀ : s x₀ ∈ Set.Ioo a₀ b₀)
(hF_meas :
∀ x ∈ Metric.ball x₀ ε, MeasureTheory.AEStronglyMeasurable (F x) (MeasureTheory.volume.restrict (Set.Ioo a₀ b₀)))
(hF_int : MeasureTheory.IntegrableOn (F x₀) (Set.Ioo a₀ b₀) MeasureTheory.volume)
(hF_cont : ContinuousAt (F x₀) (s x₀))
(hF'_meas : MeasureTheory.AEStronglyMeasurable F' (MeasureTheory.volume.restrict (Ι a (s x₀))))
(h_lipsch :
∀ᵐ (t : ℝ) ∂MeasureTheory.volume.restrict (Set.Ioo a₀ b₀), LipschitzOnWith (Real.nnabs (bound t)) (fun (x : H) => F x t) (Metric.ball x₀ ε))
(bound_integrable : MeasureTheory.IntegrableOn bound (Set.Ioo a₀ b₀) MeasureTheory.volume)
(bound_cont : ContinuousAt bound (s x₀))
(bound_nonneg : ∀ (t : ℝ), 0 ≤ bound t)
(h_diff : ∀ᵐ (a : ℝ) ∂MeasureTheory.volume.restrict (Ι a (s x₀)), HasFDerivAt (fun (x : H) => F x a) (F' a) x₀)
(s_diff : HasFDerivAt s s' x₀)
(hG' : (∫ (t : ℝ) in a..s x₀, F' t) + (ContinuousLinearMap.toSpanSingleton ℝ (F x₀ (s x₀))).comp s' = G')
:
IntervalIntegrable F' MeasureTheory.volume a (s x₀) ∧ HasFDerivAt (fun (x : H) => ∫ (t : ℝ) in a..s x, F x t) G' x₀
This statement is a new version using the continuity note in mathlib.
See commit 39e3f3f
for an older version
Maybe todo: let a
depend on x
.
theorem
hasFDerivAt_parametric_primitive_of_contDiff'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type u_2}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
[FiniteDimensional ℝ H]
{F : H → ℝ → E}
(hF : ContDiff ℝ 1 ↿F)
{s : H → ℝ}
(hs : ContDiff ℝ 1 s)
(x₀ : H)
(a : ℝ)
:
theorem
contDiff_parametric_primitive_of_contDiff'
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type u_2}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
[FiniteDimensional ℝ H]
{F : H → ℝ → E}
{n : ℕ}
(hF : ContDiff ℝ ↑n ↿F)
{s : H → ℝ}
(hs : ContDiff ℝ (↑n) s)
(a : ℝ)
:
theorem
contDiff_parametric_primitive_of_contDiff
{E : Type u}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type v}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
[FiniteDimensional ℝ H]
{F : H → ℝ → E}
{n : ℕ∞}
(hF : ContDiff ℝ ↑n ↿F)
{s : H → ℝ}
(hs : ContDiff ℝ (↑n) s)
(a : ℝ)
:
theorem
contDiff_parametric_primitive_of_contDiff''
{E : Type u}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type v}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
[FiniteDimensional ℝ H]
{F : H → ℝ → E}
{n : ℕ∞}
(hF : ContDiff ℝ ↑n ↿F)
(a : ℝ)
:
theorem
contDiff_parametric_integral_of_contDiff
{E : Type u}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type v}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
[FiniteDimensional ℝ H]
{F : H → ℝ → E}
{n : ℕ∞}
(hF : ContDiff ℝ ↑n ↿F)
(a b : ℝ)
:
theorem
ContDiff.fderiv_parametric_integral
{E : Type u}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{H : Type v}
[NormedAddCommGroup H]
[NormedSpace ℝ H]
[FiniteDimensional ℝ H]
{F : H → ℝ → E}
(hF : ContDiff ℝ 1 ↿F)
(a b : ℝ)
: