Documentation

SphereEversion.ToMathlib.MeasureTheory.ParametricIntervalIntegral

We could weaken FiniteDimensional ℝ H with SecondCountable (H →L[ℝ] E) if needed, but that is less convenient to work with.

theorem hasFDerivAt_parametric_primitive_of_lip' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type u_2} [NormedAddCommGroup H] [NormedSpace H] (F : HE) (F' : H →L[] E) {x₀ : H} {G' : H →L[] E} {bound : } {s : H} {ε : } (ε_pos : 0 < ε) {a a₀ b₀ : } {s' : H →L[] } (ha : a Set.Ioo a₀ b₀) (hsx₀ : s x₀ Set.Ioo a₀ b₀) (hF_meas : xMetric.ball x₀ ε, MeasureTheory.AEStronglyMeasurable (F x) (MeasureTheory.volume.restrict (Set.Ioo a₀ b₀))) (hF_int : MeasureTheory.IntegrableOn (F x₀) (Set.Ioo a₀ b₀) MeasureTheory.volume) (hF_cont : ContinuousAt (F x₀) (s x₀)) (hF'_meas : MeasureTheory.AEStronglyMeasurable F' (MeasureTheory.volume.restrict (Ι a (s x₀)))) (h_lipsch : ∀ᵐ (t : ) MeasureTheory.volume.restrict (Set.Ioo a₀ b₀), LipschitzOnWith (Real.nnabs (bound t)) (fun (x : H) => F x t) (Metric.ball x₀ ε)) (bound_integrable : MeasureTheory.IntegrableOn bound (Set.Ioo a₀ b₀) MeasureTheory.volume) (bound_cont : ContinuousAt bound (s x₀)) (bound_nonneg : ∀ (t : ), 0 bound t) (h_diff : ∀ᵐ (a : ) MeasureTheory.volume.restrict (Ι a (s x₀)), HasFDerivAt (fun (x : H) => F x a) (F' a) x₀) (s_diff : HasFDerivAt s s' x₀) (hG' : ( (t : ) in a..s x₀, F' t) + (ContinuousLinearMap.toSpanSingleton (F x₀ (s x₀))).comp s' = G') :
IntervalIntegrable F' MeasureTheory.volume a (s x₀) HasFDerivAt (fun (x : H) => (t : ) in a..s x, F x t) G' x₀

This statement is a new version using the continuity note in mathlib. See commit 39e3f3f for an older version Maybe todo: let a depend on x.

theorem hasFDerivAt_parametric_primitive_of_contDiff' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type u_2} [NormedAddCommGroup H] [NormedSpace H] [FiniteDimensional H] {F : HE} (hF : ContDiff 1 F) {s : H} (hs : ContDiff 1 s) (x₀ : H) (a : ) :
IntervalIntegrable (fun (t : ) => fderiv (fun (x : H) => F x t) x₀) MeasureTheory.volume a (s x₀) HasFDerivAt (fun (x : H) => (t : ) in a..s x, F x t) (( (t : ) in a..s x₀, fderiv (fun (x : H) => F x t) x₀) + (ContinuousLinearMap.toSpanSingleton (F x₀ (s x₀))).comp (fderiv s x₀)) x₀
theorem contDiff_parametric_primitive_of_contDiff' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type u_2} [NormedAddCommGroup H] [NormedSpace H] [FiniteDimensional H] {F : HE} {n : } (hF : ContDiff n F) {s : H} (hs : ContDiff (↑n) s) (a : ) :
ContDiff n fun (x : H) => (t : ) in a..s x, F x t
theorem contDiff_parametric_primitive_of_contDiff {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type v} [NormedAddCommGroup H] [NormedSpace H] [FiniteDimensional H] {F : HE} {n : ℕ∞} (hF : ContDiff n F) {s : H} (hs : ContDiff (↑n) s) (a : ) :
ContDiff n fun (x : H) => (t : ) in a..s x, F x t
theorem contDiff_parametric_primitive_of_contDiff'' {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type v} [NormedAddCommGroup H] [NormedSpace H] [FiniteDimensional H] {F : HE} {n : ℕ∞} (hF : ContDiff n F) (a : ) :
ContDiff n fun (x : H × ) => (t : ) in a..x.2, F x.1 t
theorem contDiff_parametric_integral_of_contDiff {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type v} [NormedAddCommGroup H] [NormedSpace H] [FiniteDimensional H] {F : HE} {n : ℕ∞} (hF : ContDiff n F) (a b : ) :
ContDiff n fun (x : H) => (t : ) in a..b, F x t
theorem ContDiff.fderiv_parametric_integral {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {H : Type v} [NormedAddCommGroup H] [NormedSpace H] [FiniteDimensional H] {F : HE} (hF : ContDiff 1 F) (a b : ) :
(fderiv fun (x : H) => (t : ) in a..b, F x t) = fun (x : H) => (t : ) in a..b, fderiv (fun (x' : H) => F x' t) x