Construction of an algebraic number that is not solvable by radicals. #
The main ingredients are:
solvableByRad.isSolvable'
inMathlib/FieldTheory/AbelRuffini.lean
: an irreducible polynomial with anIsSolvableByRad
root has solvable Galois groupgalActionHom_bijective_of_prime_degree'
inMathlib/FieldTheory/PolynomialGaloisGroup.lean
: an irreducible polynomial of prime degree with 1-3 non-real roots has full Galois groupEquiv.Perm.not_solvable
inMathlib/GroupTheory/Solvable.lean
: the symmetric group is not solvable
Then all that remains is the construction of a specific polynomial satisfying the conditions of
galActionHom_bijective_of_prime_degree'
, which is done in this file.
A quintic polynomial that we will show is irreducible
Equations
- Eq (AbelRuffini.Φ R a b) (HAdd.hAdd (HSub.hSub (HPow.hPow Polynomial.X 5) (HMul.hMul (DFunLike.coe Polynomial.C a.cast) Polynomial.X)) (DFunLike.coe Polynomial.C b.cast))
Instances For
theorem
AbelRuffini.leadingCoeff_Phi
{R : Type u_1}
[CommRing R]
(a b : Nat)
[Nontrivial R]
:
Eq (Φ R a b).leadingCoeff 1
theorem
AbelRuffini.real_roots_Phi_ge_aux
(a b : Nat)
(hab : LT.lt b a)
:
Exists fun (x : Real) =>
Exists fun (y : Real) =>
And (Ne x y)
(And (Eq (DFunLike.coe (Polynomial.aeval x) (Φ Rat a b)) 0)
(Eq (DFunLike.coe (Polynomial.aeval y) (Φ Rat a b)) 0))
theorem
AbelRuffini.not_solvable_by_rad
(a b p : Nat)
(x : Complex)
(hx : Eq (DFunLike.coe (Polynomial.aeval x) (Φ Rat a b)) 0)
(hab : LT.lt b a)
(hp : Nat.Prime p)
(hpa : Dvd.dvd p a)
(hpb : Dvd.dvd p b)
(hp2b : Not (Dvd.dvd (HPow.hPow p 2) b))
:
Not (IsSolvableByRad Rat x)
theorem
AbelRuffini.not_solvable_by_rad'
(x : Complex)
(hx : Eq (DFunLike.coe (Polynomial.aeval x) (Φ Rat 4 2)) 0)
:
Not (IsSolvableByRad Rat x)
theorem
AbelRuffini.exists_not_solvable_by_rad :
Exists fun (x : Complex) => And (IsAlgebraic Rat x) (Not (IsSolvableByRad Rat x))
Abel-Ruffini Theorem