Documentation

Archive.Wiedijk100Theorems.AbelRuffini

Construction of an algebraic number that is not solvable by radicals. #

The main ingredients are:

Then all that remains is the construction of a specific polynomial satisfying the conditions of galActionHom_bijective_of_prime_degree', which is done in this file.

noncomputable def AbelRuffini.Φ (R : Type u_1) [CommRing R] (a b : Nat) :

A quintic polynomial that we will show is irreducible

Equations
Instances For
    theorem AbelRuffini.map_Phi {R : Type u_1} [CommRing R] (a b : Nat) {S : Type u_2} [CommRing S] (f : RingHom R S) :
    Eq (Polynomial.map f (Φ R a b)) (Φ S a b)
    theorem AbelRuffini.coeff_zero_Phi {R : Type u_1} [CommRing R] (a b : Nat) :
    Eq ((Φ R a b).coeff 0) b.cast
    theorem AbelRuffini.coeff_five_Phi {R : Type u_1} [CommRing R] (a b : Nat) :
    Eq ((Φ R a b).coeff 5) 1
    theorem AbelRuffini.degree_Phi {R : Type u_1} [CommRing R] (a b : Nat) [Nontrivial R] :
    Eq (Φ R a b).degree (Nat.cast 5)
    theorem AbelRuffini.natDegree_Phi {R : Type u_1} [CommRing R] (a b : Nat) [Nontrivial R] :
    Eq (Φ R a b).natDegree 5
    theorem AbelRuffini.leadingCoeff_Phi {R : Type u_1} [CommRing R] (a b : Nat) [Nontrivial R] :
    Eq (Φ R a b).leadingCoeff 1
    theorem AbelRuffini.monic_Phi {R : Type u_1} [CommRing R] (a b : Nat) [Nontrivial R] :
    (Φ R a b).Monic
    theorem AbelRuffini.irreducible_Phi (a b p : Nat) (hp : Nat.Prime p) (hpa : Dvd.dvd p a) (hpb : Dvd.dvd p b) (hp2b : Not (Dvd.dvd (HPow.hPow p 2) b)) :
    theorem AbelRuffini.real_roots_Phi_ge_aux (a b : Nat) (hab : LT.lt b a) :
    Exists fun (x : Real) => Exists fun (y : Real) => And (Ne x y) (And (Eq (DFunLike.coe (Polynomial.aeval x) (Φ Rat a b)) 0) (Eq (DFunLike.coe (Polynomial.aeval y) (Φ Rat a b)) 0))
    theorem AbelRuffini.not_solvable_by_rad (a b p : Nat) (x : Complex) (hx : Eq (DFunLike.coe (Polynomial.aeval x) (Φ Rat a b)) 0) (hab : LT.lt b a) (hp : Nat.Prime p) (hpa : Dvd.dvd p a) (hpb : Dvd.dvd p b) (hp2b : Not (Dvd.dvd (HPow.hPow p 2) b)) :