Documentation

Archive.Wiedijk100Theorems.AbelRuffini

Construction of an algebraic number that is not solvable by radicals. #

The main ingredients are:

Then all that remains is the construction of a specific polynomial satisfying the conditions of galActionHom_bijective_of_prime_degree', which is done in this file.

noncomputable def AbelRuffini.Φ (R : Type u_1) [CommRing R] (a b : ) :

A quintic polynomial that we will show is irreducible

Equations
Instances For
    @[simp]
    theorem AbelRuffini.map_Phi {R : Type u_1} [CommRing R] (a b : ) {S : Type u_2} [CommRing S] (f : R →+* S) :
    Polynomial.map f (Φ R a b) = Φ S a b
    @[simp]
    theorem AbelRuffini.coeff_zero_Phi {R : Type u_1} [CommRing R] (a b : ) :
    (Φ R a b).coeff 0 = b
    @[simp]
    theorem AbelRuffini.coeff_five_Phi {R : Type u_1} [CommRing R] (a b : ) :
    (Φ R a b).coeff 5 = 1
    theorem AbelRuffini.degree_Phi {R : Type u_1} [CommRing R] (a b : ) [Nontrivial R] :
    (Φ R a b).degree = 5
    theorem AbelRuffini.natDegree_Phi {R : Type u_1} [CommRing R] (a b : ) [Nontrivial R] :
    (Φ R a b).natDegree = 5
    theorem AbelRuffini.leadingCoeff_Phi {R : Type u_1} [CommRing R] (a b : ) [Nontrivial R] :
    (Φ R a b).leadingCoeff = 1
    theorem AbelRuffini.monic_Phi {R : Type u_1} [CommRing R] (a b : ) [Nontrivial R] :
    (Φ R a b).Monic
    theorem AbelRuffini.irreducible_Phi (a b p : ) (hp : Nat.Prime p) (hpa : p a) (hpb : p b) (hp2b : ¬p ^ 2 b) :
    theorem AbelRuffini.real_roots_Phi_le (a b : ) :
    Fintype.card ((Φ a b).rootSet ) 3
    theorem AbelRuffini.real_roots_Phi_ge_aux (a b : ) (hab : b < a) :
    ∃ (x : ) (y : ), x y (Polynomial.aeval x) (Φ a b) = 0 (Polynomial.aeval y) (Φ a b) = 0
    theorem AbelRuffini.real_roots_Phi_ge (a b : ) (hab : b < a) :
    2 Fintype.card ((Φ a b).rootSet )
    theorem AbelRuffini.complex_roots_Phi (a b : ) (h : (Φ a b).Separable) :
    Fintype.card ((Φ a b).rootSet ) = 5
    theorem AbelRuffini.gal_Phi (a b : ) (hab : b < a) (h_irred : Irreducible (Φ a b)) :
    theorem AbelRuffini.not_solvable_by_rad (a b p : ) (x : ) (hx : (Polynomial.aeval x) (Φ a b) = 0) (hab : b < a) (hp : Nat.Prime p) (hpa : p a) (hpb : p b) (hp2b : ¬p ^ 2 b) :