Birthday Problem #
This file proves Theorem 93 from the 100 Theorems List.
As opposed to the standard probabilistic statement, we instead state the birthday problem
in terms of injective functions. The general result about Fintype.card (α ↪ β)
which this proof
uses is Fintype.card_embedding_eq
.
theorem
Theorems100.birthday :
2 * Fintype.card (Fin 23 ↪ Fin 365) < Fintype.card (Fin 23 → Fin 365) ∧ 2 * Fintype.card (Fin 22 ↪ Fin 365) > Fintype.card (Fin 22 → Fin 365)
Birthday Problem: set cardinality interpretation.
Equations
- ⋯ = ⋯
noncomputable instance
Theorems100.instMeasureSpaceForallFin_archive
{n m : ℕ}
:
MeasureTheory.MeasureSpace (Fin n → Fin m)
Equations
- Theorems100.instMeasureSpaceForallFin_archive = MeasureTheory.MeasureSpace.mk (ProbabilityTheory.uniformOn Set.univ)
instance
Theorems100.instIsProbabilityMeasureForallFinHAddNatOfNatVolume_archive
{n m : ℕ}
:
MeasureTheory.IsProbabilityMeasure MeasureTheory.volume
Equations
- ⋯ = ⋯
theorem
Theorems100.birthday_measure :
MeasureTheory.volume {f : Fin 23 → Fin 365 | Function.Injective f} < 1 / 2
Birthday Problem: first probabilistic interpretation.