Documentation

Archive.Wiedijk100Theorems.BirthdayProblem

Birthday Problem #

This file proves Theorem 93 from the 100 Theorems List.

As opposed to the standard probabilistic statement, we instead state the birthday problem in terms of injective functions. The general result about Fintype.card (α ↪ β) which this proof uses is Fintype.card_embedding_eq.

theorem Theorems100.birthday :
2 * Fintype.card (Fin 23 Fin 365) < Fintype.card (Fin 23Fin 365) 2 * Fintype.card (Fin 22 Fin 365) > Fintype.card (Fin 22Fin 365)

Birthday Problem: set cardinality interpretation.

Equations
  • Theorems100.instMeasurableSpaceFin_archive =
Equations
theorem Theorems100.FinFin.measure_apply {n : } {m : } {s : Set (Fin nFin m)} :
MeasureTheory.volume s = .toFinset.card / (Fintype.card (Fin nFin m))
theorem Theorems100.birthday_measure :
MeasureTheory.volume {f : Fin 23Fin 365 | Function.Injective f} < 1 / 2

Birthday Problem: first probabilistic interpretation.