Krull dimension of polynomial ring #
We show that not all commutative rings R satisfy ringKrullDim R[X] = ringKrullDim R + 1,
following the construction in the reference link.
We define the commutative ring A as {f ∈ k(t)⟦Y⟧ | f(0) ∈ k} for a field $k$, and show that
ringKrullDim A = 1 but ringKrullDim A[X] = 3.
References #
@[reducible, inline]
abbrev
Counterexample.DimensionPolynomial.A
(k : Type u_1)
[Field k]
:
Subring (PowerSeries (RatFunc k))
We define the commutative ring A as {f ∈ k(t)⟦Y⟧ | f(0) ∈ k} for a field k.
Equations
Instances For
theorem
Counterexample.DimensionPolynomial.ringKrullDim_polynomial_A_eq_three
(k : Type u_1)
[Field k]
: