Documentation

Mathlib.RingTheory.KrullDimension.Basic

Krull dimensions of (commutative) rings #

Given a commutative ring, its ring theoretic Krull dimension is the order theoretic Krull dimension of its prime spectrum. Unfolding this definition, it is the length of the longest sequence(s) of prime ideals ordered by strict inclusion.

noncomputable def ringKrullDim (R : Type u_1) [CommSemiring R] :

The ring theoretic Krull dimension is the Krull dimension of its spectrum ordered by inclusion.

Equations
Instances For
    @[reducible, inline]
    abbrev Ring.KrullDimLE (n : ) (R : Type u_1) [CommSemiring R] :

    Type class for rings with krull dimension at most n.

    Equations
    Instances For

      If f : R →+* S is surjective, then ringKrullDim S ≤ ringKrullDim R.

      If I is an ideal of R, then ringKrullDim (R ⧸ I) ≤ ringKrullDim R.

      If R and S are isomorphic, then ringKrullDim R = ringKrullDim S.

      Alias of ringKrullDim_eq_of_ringEquiv.


      If R and S are isomorphic, then ringKrullDim R = ringKrullDim S.

      @[reducible, inline]

      A ring has finite Krull dimension if its PrimeSpectrum is finite-dimensional (and non-empty).

      Equations
      Instances For
        theorem Ring.krullDimLE_zero_iff {R : Type u_1} [CommSemiring R] :
        KrullDimLE 0 R ∀ (I : Ideal R), I.IsPrimeI.IsMaximal
        theorem Ring.KrullDimLE.mk₀ {R : Type u_1} [CommSemiring R] (H : ∀ (I : Ideal R), I.IsPrimeI.IsMaximal) :
        theorem Ring.KrullDimLE.mk₁ {R : Type u_1} [CommSemiring R] (H : ∀ (I : Ideal R), I.IsPrimeI minimalPrimes R I.IsMaximal) :
        theorem Ring.KrullDimLE.mk₁' {R : Type u_1} [CommSemiring R] (H : ∀ (I : Ideal R), I I.IsPrimeI.IsMaximal) :

        Alternative constructor for Ring.KrullDimLE 1, convenient for domains.