Krull dimension of polynomial ring #
This file proves properties of the Krull dimension of the polynomial ring over a commutative ring
Main results #
Polynomial.ringKrullDim_le: the Krull dimension of the polynomial ring over a commutative ringRis less than2 * (ringKrullDim R) + 1. For noetherian rings:Polynomial.ringKrullDim_of_isNoetherianRing: the Krull dimension ofR[X]isdim R + 1.MvPolynomial.ringKrullDim_of_isNoetherianRing: the Krull dimension ofR[X₁, ..., Xₙ]isdim R + n.
theorem
Polynomial.height_eq_height_add_one
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
(p : Ideal R)
(P : Ideal (Polynomial R))
[P.IsMaximal]
[P.LiesOver p]
:
Let p be a prime ideal of R. If P is a maximal ideal of R[X] lying over p,
ht(P) = ht(p) + 1.
@[simp]
theorem
Polynomial.ringKrullDim_of_isNoetherianRing
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
:
If R is Noetherian, dim R[X] = dim R + 1.
@[simp]
theorem
MvPolynomial.ringKrullDim_of_isNoetherianRing
{R : Type u_1}
[CommRing R]
[IsNoetherianRing R]
{ι : Type u_2}
[Finite ι]
:
If R is Noetherian, dim R[X₁, ..., Xₙ] = dim R + n.