The fiber of a ring homomorphism at a prime ideal #
Main results #
Ideal.Fiber:p.Fiber Sis the fiber of a primepofRin anR-algebraS, defined to beκ(p) ⊗ S.PrimeSpectrum.preimageHomeomorphFiber: We show that there is a homeomorphism between the fiber of the induced mapPrimeSpectrum S → PrimeSpectrum Rat a prime idealpand the prime spectrum ofp.Fiber S.
The fiber of a prime p of R in an R-algebra S, defined to be κ(p) ⊗ S.
See PrimeSpectrum.preimageHomeomorphFiber for the homeomorphism between the spectrum of it
and the actual set-theoretic fiber of PrimeSpectrum S → PrimeSpectrum R at p.
Equations
- p.Fiber S = TensorProduct R p.ResidueField S
Instances For
The fiber PrimeSpectrum S → PrimeSpectrum R at a prime ideal
p : PrimeSpectrum R is in bijection with the prime spectrum of κ(p) ⊗[R] S.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The OrderIso between the fiber of PrimeSpectrum S → PrimeSpectrum R at a prime
ideal p : PrimeSpectrum R and the prime spectrum of κ(p) ⊗[R] S.
Equations
- PrimeSpectrum.preimageOrderIsoFiber R S p = { toEquiv := PrimeSpectrum.preimageEquivFiber R S p, map_rel_iff' := ⋯ }
Instances For
Alias of PrimeSpectrum.preimageOrderIsoFiber.
The OrderIso between the fiber of PrimeSpectrum S → PrimeSpectrum R at a prime
ideal p : PrimeSpectrum R and the prime spectrum of κ(p) ⊗[R] S.
Instances For
The OrderIso between the set of primes lying over a prime ideal p : Ideal R,
and the prime spectrum of κ(p) ⊗[R] S.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Homeomorph between the fiber of PrimeSpectrum S → PrimeSpectrum R
at a prime ideal p : PrimeSpectrum R and the prime spectrum of κ(p) ⊗[R] S.
Equations
- PrimeSpectrum.preimageHomeomorphFiber R S p = { toEquiv := (PrimeSpectrum.preimageOrderIsoFiber R S p).toEquiv, continuous_toFun := ⋯, continuous_invFun := ⋯ }