A class of examples of invertible modules that are not isomorphic to ideals #
References: https://math.stackexchange.com/a/5090562 or https://mathoverflow.net/a/499258
@[reducible, inline]
The trivial square-zero extension of a commutative ring R given by the direct sum R ⊕ ⨁ₘ R⧸m where m ranges over maximal ideals of R.
Equations
- SqZeroExtQuotMax R = TrivSqZeroExt R (Π₀ (m : MaximalSpectrum R), R ⧸ m.asIdeal)
Instances For
@[reducible, inline]
R as an algebra over SqZeroExtQuotMax R.
Equations
- SqZeroExtQuotMax.algebraBase R = TrivSqZeroExt.algebraBase R (Π₀ (m : MaximalSpectrum R), R ⧸ m.asIdeal)
Instances For
theorem
SqZeroExtQuotMax.not_exists_linearEquiv_ideal_of_invertible
(R : Type u_1)
[CommRing R]
[Nontrivial (CommRing.Pic R)]
:
∃ (M : CommRing.Pic (SqZeroExtQuotMax R)),
¬∃ (I : Ideal (SqZeroExtQuotMax R)), Nonempty (M.AsModule ≃ₗ[SqZeroExtQuotMax R] ↥I)
If the Picard group of a commutative ring R is nontrivial, then SqZeroExtQuotMax R
has an invertible module (which is the base change of an invertible ideal of R)
not isomorphic to any ideal.