Documentation

Mathlib.Algebra.Category.BialgCat.Basic

The category of bialgebras over a commutative ring #

We introduce the bundled category BialgCat of bialgebras over a fixed commutative ring R along with the forgetful functors to CoalgCat and AlgCat.

This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat.

structure BialgCat (R : Type u) [CommRing R] :
Type (max u (v + 1))

The category of R-bialgebras.

Instances For
    Equations
    def BialgCat.of (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :

    The object in the category of R-bialgebras associated to an R-bialgebra.

    Equations
    • BialgCat.of R X = { carrier := X, instRing := inst✝¹, instBialgebra := inst✝ }
    Instances For
      @[simp]
      theorem BialgCat.of_instBialgebra (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
      (of R X).instBialgebra = inst✝
      @[simp]
      theorem BialgCat.of_carrier (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
      (of R X).carrier = X
      @[simp]
      theorem BialgCat.of_instRing (R : Type u) [CommRing R] (X : Type v) [Ring X] [Bialgebra R X] :
      (of R X).instRing = inst✝
      structure BialgCat.Hom {R : Type u} [CommRing R] (V W : BialgCat R) :

      A type alias for BialgHom to avoid confusion between the categorical and algebraic spellings of composition.

      Instances For
        theorem BialgCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : BialgCat R} {x y : V.Hom W} (toBialgHom' : x.toBialgHom' = y.toBialgHom') :
        x = y
        theorem BialgCat.Hom.ext_iff {R : Type u} {inst✝ : CommRing R} {V W : BialgCat R} {x y : V.Hom W} :
        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        • One or more equations did not get rendered due to their size.
        @[reducible, inline]
        abbrev BialgCat.Hom.toBialgHom {R : Type u} [CommRing R] {X Y : BialgCat R} (f : X.Hom Y) :

        Turn a morphism in BialgCat back into a BialgHom.

        Equations
        Instances For
          @[reducible, inline]
          abbrev BialgCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (f : X →ₐc[R] Y) :
          of R X of R Y

          Typecheck a BialgHom as a morphism in BialgCat R.

          Equations
          Instances For
            theorem BialgCat.hom_ext {R : Type u} [CommRing R] {X Y : BialgCat R} (f g : X Y) (h : Hom.toBialgHom f = Hom.toBialgHom g) :
            f = g
            theorem BialgCat.hom_ext_iff {R : Type u} [CommRing R] {X Y : BialgCat R} {f g : X Y} :
            Equations
            • One or more equations did not get rendered due to their size.
            Equations
            • One or more equations did not get rendered due to their size.
            Equations
            • One or more equations did not get rendered due to their size.
            def BialgEquiv.toBialgIso {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :

            Build an isomorphism in the category BialgCat R from a BialgEquiv.

            Equations
            Instances For
              @[simp]
              theorem BialgEquiv.toBialgIso_hom {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
              @[simp]
              theorem BialgEquiv.toBialgIso_inv {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
              @[simp]
              theorem BialgEquiv.toBialgIso_symm {R : Type u} [CommRing R] {X Y : Type v} [Ring X] [Ring Y] [Bialgebra R X] [Bialgebra R Y] (e : X ≃ₐc[R] Y) :
              @[simp]
              theorem BialgEquiv.toBialgIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [Ring X] [Ring Y] [Ring Z] [Bialgebra R X] [Bialgebra R Y] [Bialgebra R Z] (e : X ≃ₐc[R] Y) (f : Y ≃ₐc[R] Z) :

              Build a BialgEquiv from an isomorphism in the category BialgCat R.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Iso.toBialgEquiv_trans {R : Type u} [CommRing R] {X Y Z : BialgCat R} (e : X Y) (f : Y Z) :