The category of coalgebras over a commutative ring #
We introduce the bundled category CoalgCat
of coalgebras over a fixed commutative ring R
along with the forgetful functor to ModuleCat
.
This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat
.
The category of R
-coalgebras.
- isAddCommGroup : AddCommGroup ↑self.toModuleCat
- isModule : Module R ↑self.toModuleCat
- instCoalgebra : Coalgebra R ↑self.toModuleCat
Instances For
Equations
- CoalgCat.instCoeSortType = { coe := fun (x : CoalgCat R) => ↑x.toModuleCat }
@[simp]
@[reducible, inline]
abbrev
CoalgCat.of
(R : Type u)
[CommRing R]
(X : Type v)
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
CoalgCat R
The object in the category of R
-coalgebras associated to an R
-coalgebra.
Equations
- CoalgCat.of R X = { toModuleCat := ModuleCat.of R X, instCoalgebra := inferInstance }
Instances For
@[simp]
theorem
CoalgCat.of_comul
{R : Type u}
[CommRing R]
{X : Type v}
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
@[simp]
theorem
CoalgCat.of_counit
{R : Type u}
[CommRing R]
{X : Type v}
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
theorem
CoalgCat.Hom.ext
{R : Type u}
{inst✝ : CommRing R}
{V W : CoalgCat R}
{x y : V.Hom W}
(toCoalgHom' : x.toCoalgHom' = y.toCoalgHom')
:
Equations
- One or more equations did not get rendered due to their size.
instance
CoalgCat.concreteCategory
{R : Type u}
[CommRing R]
:
CategoryTheory.ConcreteCategory (CoalgCat R) fun (x1 x2 : CoalgCat R) => ↑x1.toModuleCat →ₗc[R] ↑x2.toModuleCat
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev
CoalgCat.ofHom
{R : Type u}
[CommRing R]
{X Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(f : X →ₗc[R] Y)
:
Typecheck a CoalgHom
as a morphism in CoalgCat R
.
Equations
Instances For
theorem
CoalgCat.hom_ext
{R : Type u}
[CommRing R]
{M N : CoalgCat R}
(f g : M ⟶ N)
(h : Hom.toCoalgHom f = Hom.toCoalgHom g)
:
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
def
CoalgEquiv.toCoalgIso
{R : Type u}
[CommRing R]
{X Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
Build an isomorphism in the category CoalgCat R
from a
CoalgEquiv
.
Equations
- e.toCoalgIso = { hom := CoalgCat.ofHom ↑e, inv := CoalgCat.ofHom ↑e.symm, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
@[simp]
theorem
CoalgEquiv.toCoalgIso_inv
{R : Type u}
[CommRing R]
{X Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
@[simp]
theorem
CoalgEquiv.toCoalgIso_hom
{R : Type u}
[CommRing R]
{X Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
@[simp]
theorem
CoalgEquiv.toCoalgIso_refl
{R : Type u}
[CommRing R]
{X : Type v}
[AddCommGroup X]
[Module R X]
[Coalgebra R X]
:
@[simp]
theorem
CoalgEquiv.toCoalgIso_symm
{R : Type u}
[CommRing R]
{X Y : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[Coalgebra R X]
[Coalgebra R Y]
(e : X ≃ₗc[R] Y)
:
@[simp]
theorem
CoalgEquiv.toCoalgIso_trans
{R : Type u}
[CommRing R]
{X Y Z : Type v}
[AddCommGroup X]
[Module R X]
[AddCommGroup Y]
[Module R Y]
[AddCommGroup Z]
[Module R Z]
[Coalgebra R X]
[Coalgebra R Y]
[Coalgebra R Z]
(e : X ≃ₗc[R] Y)
(f : Y ≃ₗc[R] Z)
:
Build a CoalgEquiv
from an isomorphism in the category
CoalgCat R
.
Equations
- i.toCoalgEquiv = { toCoalgHom := CoalgCat.Hom.toCoalgHom i.hom, invFun := ⇑(CoalgCat.Hom.toCoalgHom i.inv), left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Iso.toCoalgEquiv_toCoalgHom
{R : Type u}
[CommRing R]
{X Y : CoalgCat R}
(i : X ≅ Y)
:
@[simp]
@[simp]
theorem
CategoryTheory.Iso.toCoalgEquiv_symm
{R : Type u}
[CommRing R]
{X Y : CoalgCat R}
(e : X ≅ Y)
: