Documentation

Mathlib.RingTheory.Coalgebra.Hom

Homomorphisms of R-coalgebras #

This file defines bundled homomorphisms of R-coalgebras. We largely mimic Mathlib/Algebra/Algebra/Hom.lean.

Main definitions #

Notations #

structure CoalgHom (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] extends A →ₗ[R] B :
Type (max u_2 u_3)

Given R-modules A, B with comultiplication maps Δ_A, Δ_B and counit maps ε_A, ε_B, an R-coalgebra homomorphism A →ₗc[R] B is an R-linear map f such that ε_B ∘ f = ε_A and (f ⊗ f) ∘ Δ_A = Δ_B ∘ f.

  • toFun : AB
  • map_add' : ∀ (x y : A), self.toFun (x + y) = self.toFun x + self.toFun y
  • map_smul' : ∀ (m : R) (x : A), self.toFun (m x) = (RingHom.id R) m self.toFun x
  • counit_comp : Coalgebra.counit ∘ₗ self.toLinearMap = Coalgebra.counit
  • map_comp_comul : TensorProduct.map self.toLinearMap self.toLinearMap ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ self.toLinearMap
Instances For

    Given R-modules A, B with comultiplication maps Δ_A, Δ_B and counit maps ε_A, ε_B, an R-coalgebra homomorphism A →ₗc[R] B is an R-linear map f such that ε_B ∘ f = ε_A and (f ⊗ f) ∘ Δ_A = Δ_B ∘ f.

    Equations
    Instances For

      Given R-modules A, B with comultiplication maps Δ_A, Δ_B and counit maps ε_A, ε_B, an R-coalgebra homomorphism A →ₗc[R] B is an R-linear map f such that ε_B ∘ f = ε_A and (f ⊗ f) ∘ Δ_A = Δ_B ∘ f.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        class CoalgHomClass (F : Type u_1) (R : outParam (Type u_2)) (A : outParam (Type u_3)) (B : outParam (Type u_4)) [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] extends SemilinearMapClass F (RingHom.id R) A B :

        CoalgHomClass F R A B asserts F is a type of bundled coalgebra homomorphisms from A to B.

        • map_add : ∀ (f : F) (x y : A), f (x + y) = f x + f y
        • map_smulₛₗ : ∀ (f : F) (c : R) (x : A), f (c x) = (RingHom.id R) c f x
        • counit_comp : ∀ (f : F), Coalgebra.counit ∘ₗ f = Coalgebra.counit
        • map_comp_comul : ∀ (f : F), TensorProduct.map f f ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ f
        Instances
          def CoalgHomClass.toCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) :

          Turn an element of a type F satisfying CoalgHomClass F R A B into an actual CoalgHom. This is declared as the default coercion from F to A →ₗc[R] B.

          Equations
          • f = { toFun := f, map_add' := , map_smul' := , counit_comp := , map_comp_comul := }
          Instances For
            instance CoalgHomClass.instCoeToCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] :
            Equations
            • CoalgHomClass.instCoeToCoalgHom = { coe := CoalgHomClass.toCoalgHom }
            @[simp]
            theorem CoalgHomClass.counit_comp_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) (x : A) :
            Coalgebra.counit (f x) = Coalgebra.counit x
            @[simp]
            theorem CoalgHomClass.map_comp_comul_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {F : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] [FunLike F A B] [CoalgHomClass F R A B] (f : F) (x : A) :
            (TensorProduct.map f f) (Coalgebra.comul x) = Coalgebra.comul (f x)
            instance CoalgHom.funLike {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
            FunLike (A →ₗc[R] B) A B
            Equations
            • CoalgHom.funLike = { coe := fun (f : A →ₗc[R] B) => f.toFun, coe_injective' := }
            instance CoalgHom.coalgHomClass {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
            Equations
            • =
            def CoalgHom.Simps.apply {R : Type u_6} {α : Type u_7} {β : Type u_8} [CommSemiring R] [AddCommMonoid α] [Module R α] [AddCommMonoid β] [Module R β] [CoalgebraStruct R α] [CoalgebraStruct R β] (f : α →ₗc[R] β) :
            αβ

            See Note [custom simps projection]

            Equations
            Instances For
              @[simp]
              theorem CoalgHom.coe_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {F : Type u_6} [FunLike F A B] [CoalgHomClass F R A B] (f : F) :
              f = f
              @[simp]
              theorem CoalgHom.coe_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A →ₗ[R] B} (h : Coalgebra.counit ∘ₗ f = Coalgebra.counit) (h₁ : TensorProduct.map f f ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ f) :
              { toLinearMap := f, counit_comp := h, map_comp_comul := h₁ } = f
              theorem CoalgHom.coe_mks {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : AB} (h₁ : ∀ (x y : A), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : A), { toFun := f, map_add' := h₁ }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h₁ }.toFun x) (h₃ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ } = Coalgebra.counit) (h₄ : TensorProduct.map { toFun := f, map_add' := h₁, map_smul' := h₂ } { toFun := f, map_add' := h₁, map_smul' := h₂ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ }) :
              { toFun := f, map_add' := h₁, map_smul' := h₂, counit_comp := h₃, map_comp_comul := h₄ } = f
              @[simp]
              theorem CoalgHom.coe_linearMap_mk {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A →ₗ[R] B} (h : Coalgebra.counit ∘ₗ f = Coalgebra.counit) (h₁ : TensorProduct.map f f ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ f) :
              { toLinearMap := f, counit_comp := h, map_comp_comul := h₁ } = f
              @[simp]
              theorem CoalgHom.toLinearMap_eq_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) :
              f.toLinearMap = f
              @[simp]
              theorem CoalgHom.coe_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) :
              f = f
              theorem CoalgHom.coe_toAddMonoidHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) :
              f = f
              theorem CoalgHom.coe_fn_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
              Function.Injective DFunLike.coe
              theorem CoalgHom.coe_fn_inj {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {φ₁ φ₂ : A →ₗc[R] B} :
              φ₁ = φ₂ φ₁ = φ₂
              theorem CoalgHom.coe_linearMap_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
              Function.Injective fun (x : A →ₗc[R] B) => x
              theorem CoalgHom.coe_addMonoidHom_injective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] :
              Function.Injective AddMonoidHomClass.toAddMonoidHom
              theorem CoalgHom.congr_fun {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {φ₁ φ₂ : A →ₗc[R] B} (H : φ₁ = φ₂) (x : A) :
              φ₁ x = φ₂ x
              theorem CoalgHom.congr_arg {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) {x y : A} (h : x = y) :
              φ x = φ y
              theorem CoalgHom.ext {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {φ₁ φ₂ : A →ₗc[R] B} (H : ∀ (x : A), φ₁ x = φ₂ x) :
              φ₁ = φ₂
              theorem CoalgHom.ext_of_ring {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] {f g : R →ₗc[R] A} (h : f 1 = g 1) :
              f = g
              @[simp]
              theorem CoalgHom.mk_coe {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {f : A →ₗc[R] B} (h₁ : ∀ (x y : A), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : A), { toFun := f, map_add' := h₁ }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h₁ }.toFun x) (h₃ : Coalgebra.counit ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ } = Coalgebra.counit) (h₄ : TensorProduct.map { toFun := f, map_add' := h₁, map_smul' := h₂ } { toFun := f, map_add' := h₁, map_smul' := h₂ } ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ { toFun := f, map_add' := h₁, map_smul' := h₂ }) :
              { toFun := f, map_add' := h₁, map_smul' := h₂, counit_comp := h₃, map_comp_comul := h₄ } = f
              def CoalgHom.copy {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) (f' : AB) (h : f' = f) :

              Copy of a CoalgHom with a new toFun equal to the old one. Useful to fix definitional equalities.

              Equations
              • f.copy f' h = { toLinearMap := (↑f).copy f' h, counit_comp := , map_comp_comul := }
              Instances For
                @[simp]
                theorem CoalgHom.coe_copy {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) (f' : AB) (h : f' = f) :
                (f.copy f' h) = f'
                theorem CoalgHom.copy_eq {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (f : A →ₗc[R] B) (f' : AB) (h : f' = f) :
                f.copy f' h = f
                def CoalgHom.id (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :

                Identity map as a CoalgHom.

                Equations
                • CoalgHom.id R A = { toLinearMap := LinearMap.id, counit_comp := , map_comp_comul := }
                Instances For
                  @[simp]
                  theorem CoalgHom.id_apply (R : Type u_1) (A : Type u_2) [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (a : A) :
                  (CoalgHom.id R A) a = a
                  @[simp]
                  theorem CoalgHom.coe_id {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                  (CoalgHom.id R A) = id
                  @[simp]
                  theorem CoalgHom.id_toLinearMap {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                  (CoalgHom.id R A) = LinearMap.id
                  def CoalgHom.comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :

                  Composition of coalgebra homomorphisms.

                  Equations
                  • φ₁.comp φ₂ = { toLinearMap := φ₁ ∘ₗ φ₂, counit_comp := , map_comp_comul := }
                  Instances For
                    @[simp]
                    theorem CoalgHom.comp_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) (a✝ : A) :
                    (φ₁.comp φ₂) a✝ = φ₁ (φ₂ a✝)
                    @[simp]
                    theorem CoalgHom.coe_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :
                    (φ₁.comp φ₂) = φ₁ φ₂
                    @[simp]
                    theorem CoalgHom.comp_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] (φ₁ : B →ₗc[R] C) (φ₂ : A →ₗc[R] B) :
                    (φ₁.comp φ₂) = φ₁ ∘ₗ φ₂
                    @[simp]
                    theorem CoalgHom.comp_id {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) :
                    φ.comp (CoalgHom.id R A) = φ
                    @[simp]
                    theorem CoalgHom.id_comp {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) :
                    (CoalgHom.id R B).comp φ = φ
                    theorem CoalgHom.comp_assoc {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [AddCommMonoid C] [Module R C] [AddCommMonoid D] [Module R D] [CoalgebraStruct R A] [CoalgebraStruct R B] [CoalgebraStruct R C] [CoalgebraStruct R D] (φ₁ : C →ₗc[R] D) (φ₂ : B →ₗc[R] C) (φ₃ : A →ₗc[R] B) :
                    (φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃)
                    theorem CoalgHom.map_smul_of_tower {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (φ : A →ₗc[R] B) {R' : Type u_6} [SMul R' A] [SMul R' B] [LinearMap.CompatibleSMul A B R' R] (r : R') (x : A) :
                    φ (r x) = r φ x
                    instance CoalgHom.End {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                    Equations
                    • CoalgHom.End = Monoid.mk npowRecAuto
                    theorem CoalgHom.End_toOne_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] :
                    theorem CoalgHom.End_toSemigroup_toMul_mul {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (φ₁ φ₂ : A →ₗc[R] A) :
                    φ₁ * φ₂ = φ₁.comp φ₂
                    @[simp]
                    theorem CoalgHom.one_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (x : A) :
                    1 x = x
                    @[simp]
                    theorem CoalgHom.mul_apply {R : Type u_1} {A : Type u_2} [CommSemiring R] [AddCommMonoid A] [Module R A] [CoalgebraStruct R A] (φ ψ : A →ₗc[R] A) (x : A) :
                    (φ * ψ) x = φ (ψ x)

                    The counit of a coalgebra as a CoalgHom.

                    Equations
                    Instances For
                      @[simp]
                      theorem Coalgebra.counitCoalgHom_apply (R : Type u) (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (x : A) :
                      (Coalgebra.counitCoalgHom R A) x = Coalgebra.counit x
                      @[simp]
                      theorem Coalgebra.counitCoalgHom_toLinearMap (R : Type u) (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] :
                      (Coalgebra.counitCoalgHom R A) = Coalgebra.counit
                      Equations
                      • =
                      theorem Coalgebra.ext_to_ring {R : Type u} (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (f g : A →ₗc[R] R) :
                      f = g
                      def Coalgebra.Repr.induced {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :

                      If φ : A → B is a coalgebra map and a = ∑ xᵢ ⊗ yᵢ, then φ a = ∑ φ xᵢ ⊗ φ yᵢ

                      Equations
                      Instances For
                        @[simp]
                        theorem Coalgebra.Repr.induced_index {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :
                        (repr.induced φ).index = repr.index
                        @[simp]
                        theorem Coalgebra.Repr.induced_left {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) (a✝ : repr) :
                        (repr.induced φ).left a✝ = (φ repr.left) a✝
                        @[simp]
                        theorem Coalgebra.Repr.induced_right {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) (a✝ : repr) :
                        (repr.induced φ).right a✝ = (φ repr.right) a✝
                        @[simp]
                        theorem Coalgebra.Repr.induced_ι {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] {a : A} (repr : Coalgebra.Repr R a) {F : Type u_1} [FunLike F A B] [CoalgHomClass F R A B] (φ : F) :
                        (repr.induced φ) = repr