The monoidal category structure on R
-coalgebras #
In Mathlib.RingTheory.Coalgebra.TensorProduct
, given two R
-coalgebras M, N
, we define a
coalgebra instance on M ⊗[R] N
, as well as the tensor product of two CoalgHom
s as a
CoalgHom
, and the associator and left/right unitors for coalgebras as CoalgEquiv
s.
In this file, we declare a MonoidalCategory
instance on the category of coalgebras, with data
fields given by the definitions in Mathlib.RingTheory.Coalgebra.TensorProduct
, and Prop
fields proved by pulling back the MonoidalCategory
instance on the category of modules,
using Monoidal.induced
.
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_tensorObj
(R : Type u)
[CommRing R]
(X : CoalgebraCat R)
(Y : CoalgebraCat R)
:
CategoryTheory.MonoidalCategory.tensorObj X Y = CoalgebraCat.of R (TensorProduct R ↑X.toModuleCat ↑Y.toModuleCat)
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_whiskerRight_toCoalgHom
(R : Type u)
[CommRing R]
:
∀ {X₁ X₂ : CoalgebraCat R} (f : X₁ ⟶ X₂) (X : CoalgebraCat R),
(CategoryTheory.MonoidalCategory.whiskerRight f X).toCoalgHom = CoalgHom.rTensor (↑X.toModuleCat) f.toCoalgHom
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_rightUnitor
(R : Type u)
[CommRing R]
(X : CoalgebraCat R)
:
CategoryTheory.MonoidalCategory.rightUnitor X = (Coalgebra.TensorProduct.rid R ↑X.toModuleCat).toCoalgebraCatIso
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_tensorHom_toCoalgHom
(R : Type u)
[CommRing R]
:
∀ {X₁ Y₁ X₂ Y₂ : CoalgebraCat R} (f : X₁ ⟶ Y₁) (g : X₂ ⟶ Y₂),
(CategoryTheory.MonoidalCategory.tensorHom f g).toCoalgHom = Coalgebra.TensorProduct.map f.toCoalgHom g.toCoalgHom
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_whiskerLeft_toCoalgHom
(R : Type u)
[CommRing R]
(X : CoalgebraCat R)
:
∀ (x x_1 : CoalgebraCat R) (f : x ⟶ x_1),
(CategoryTheory.MonoidalCategory.whiskerLeft X f).toCoalgHom = CoalgHom.lTensor (↑X.toModuleCat) f.toCoalgHom
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_associator
(R : Type u)
[CommRing R]
(X : CoalgebraCat R)
(Y : CoalgebraCat R)
(Z : CoalgebraCat R)
:
CategoryTheory.MonoidalCategory.associator X Y Z = (Coalgebra.TensorProduct.assoc R ↑X.toModuleCat ↑Y.toModuleCat ↑Z.toModuleCat).toCoalgebraCatIso
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_leftUnitor
(R : Type u)
[CommRing R]
(X : CoalgebraCat R)
:
CategoryTheory.MonoidalCategory.leftUnitor X = (Coalgebra.TensorProduct.lid R ↑X.toModuleCat).toCoalgebraCatIso
@[simp]
theorem
CoalgebraCat.instMonoidalCategoryStruct_tensorUnit
(R : Type u)
[CommRing R]
:
𝟙_ (CoalgebraCat R) = CoalgebraCat.of R R
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CoalgebraCat.MonoidalCategory.inducingFunctorData_εIso
(R : Type u)
[CommRing R]
:
(CoalgebraCat.MonoidalCategory.inducingFunctorData R).εIso = CategoryTheory.Iso.refl (𝟙_ (ModuleCat R))
@[simp]
theorem
CoalgebraCat.MonoidalCategory.inducingFunctorData_μIso
(R : Type u)
[CommRing R]
:
∀ (x x_1 : CoalgebraCat R),
(CoalgebraCat.MonoidalCategory.inducingFunctorData R).μIso x x_1 = CategoryTheory.Iso.refl
(CategoryTheory.MonoidalCategory.tensorObj ((CategoryTheory.forget₂ (CoalgebraCat R) (ModuleCat R)).obj x)
((CategoryTheory.forget₂ (CoalgebraCat R) (ModuleCat R)).obj x_1))
The data needed to induce a MonoidalCategory
structure via
CoalgebraCat.instMonoidalCategoryStruct
and the forgetful functor to modules.
Equations
- One or more equations did not get rendered due to their size.