Documentation

Mathlib.Algebra.Category.CoalgebraCat.Basic

The category of coalgebras over a commutative ring #

We introduce the bundled category CoalgebraCat of coalgebras over a fixed commutative ring R along with the forgetful functor to ModuleCat.

This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat.

structure CoalgebraCat (R : Type u) [CommRing R] extends ModuleCat R :
Type (max u (v + 1))

The category of R-coalgebras.

Instances For
    Equations
    • CoalgebraCat.instCoeSortType = { coe := fun (x : CoalgebraCat R) => x.toModuleCat }
    @[simp]
    theorem CoalgebraCat.moduleCat_of_toModuleCat {R : Type u} [CommRing R] (X : CoalgebraCat R) :
    ModuleCat.of R X.toModuleCat = X.toModuleCat
    def CoalgebraCat.of (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :

    The object in the category of R-coalgebras associated to an R-coalgebra.

    Equations
    Instances For
      @[simp]
      theorem CoalgebraCat.of_instCoalgebra (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      (CoalgebraCat.of R X).instCoalgebra = inferInstance
      @[simp]
      theorem CoalgebraCat.of_isModule (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      (CoalgebraCat.of R X).isModule = inst✝
      @[simp]
      theorem CoalgebraCat.of_carrier (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      (CoalgebraCat.of R X).toModuleCat = X
      @[simp]
      theorem CoalgebraCat.of_isAddCommGroup (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      (CoalgebraCat.of R X).isAddCommGroup = inst✝
      @[simp]
      theorem CoalgebraCat.of_comul {R : Type u} [CommRing R] {X : Type v} [AddCommGroup X] [Module R X] [Coalgebra R X] :
      Coalgebra.comul = Coalgebra.comul
      @[simp]
      theorem CoalgebraCat.of_counit {R : Type u} [CommRing R] {X : Type v} [AddCommGroup X] [Module R X] [Coalgebra R X] :
      Coalgebra.counit = Coalgebra.counit
      structure CoalgebraCat.Hom {R : Type u} [CommRing R] (V W : CoalgebraCat R) :

      A type alias for CoalgHom to avoid confusion between the categorical and algebraic spellings of composition.

      Instances For
        theorem CoalgebraCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : CoalgebraCat R} {x y : V.Hom W} (toCoalgHom : x.toCoalgHom = y.toCoalgHom) :
        x = y
        theorem CoalgebraCat.Hom.toCoalgHom_injective {R : Type u} [CommRing R] (V W : CoalgebraCat R) :
        Function.Injective CoalgebraCat.Hom.toCoalgHom
        theorem CoalgebraCat.hom_ext {R : Type u} [CommRing R] {M N : CoalgebraCat R} (f g : M N) (h : f.toCoalgHom = g.toCoalgHom) :
        f = g
        @[reducible, inline]
        abbrev CoalgebraCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (f : X →ₗc[R] Y) :

        Typecheck a CoalgHom as a morphism in CoalgebraCat R.

        Equations
        Instances For
          @[simp]
          theorem CoalgebraCat.toCoalgHom_comp {R : Type u} [CommRing R] {M N U : CoalgebraCat R} (f : M N) (g : N U) :
          (CategoryTheory.CategoryStruct.comp f g).toCoalgHom = g.toCoalgHom.comp f.toCoalgHom
          @[simp]
          theorem CoalgebraCat.toCoalgHom_id {R : Type u} [CommRing R] {M : CoalgebraCat R} :
          (CategoryTheory.CategoryStruct.id M).toCoalgHom = CoalgHom.id R M.toModuleCat
          Equations
          • One or more equations did not get rendered due to their size.
          Equations
          • One or more equations did not get rendered due to their size.
          @[simp]
          theorem CoalgebraCat.forget₂_obj {R : Type u} [CommRing R] (X : CoalgebraCat R) :
          (CategoryTheory.forget₂ (CoalgebraCat R) (ModuleCat R)).obj X = ModuleCat.of R X.toModuleCat
          @[simp]
          theorem CoalgebraCat.forget₂_map {R : Type u} [CommRing R] (X Y : CoalgebraCat R) (f : X Y) :

          Build an isomorphism in the category CoalgebraCat R from a CoalgEquiv.

          Equations
          Instances For
            @[simp]
            theorem CoalgEquiv.toCoalgebraCatIso_hom_toCoalgHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
            e.toCoalgebraCatIso.hom.toCoalgHom = e
            @[simp]
            theorem CoalgEquiv.toCoalgebraCatIso_inv_toCoalgHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
            e.toCoalgebraCatIso.inv.toCoalgHom = e.symm
            @[simp]
            @[simp]
            theorem CoalgEquiv.toCoalgebraCatIso_symm {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (e : X ≃ₗc[R] Y) :
            e.symm.toCoalgebraCatIso = e.toCoalgebraCatIso.symm
            @[simp]
            theorem CoalgEquiv.toCoalgebraCatIso_trans {R : Type u} [CommRing R] {X Y Z : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [AddCommGroup Z] [Module R Z] [Coalgebra R X] [Coalgebra R Y] [Coalgebra R Z] (e : X ≃ₗc[R] Y) (f : Y ≃ₗc[R] Z) :
            (e.trans f).toCoalgebraCatIso = e.toCoalgebraCatIso ≪≫ f.toCoalgebraCatIso
            def CategoryTheory.Iso.toCoalgEquiv {R : Type u} [CommRing R] {X Y : CoalgebraCat R} (i : X Y) :
            X.toModuleCat ≃ₗc[R] Y.toModuleCat

            Build a CoalgEquiv from an isomorphism in the category CoalgebraCat R.

            Equations
            • i.toCoalgEquiv = { toCoalgHom := i.hom.toCoalgHom, invFun := i.inv.toCoalgHom, left_inv := , right_inv := }
            Instances For
              @[simp]
              theorem CategoryTheory.Iso.toCoalgEquiv_toCoalgHom {R : Type u} [CommRing R] {X Y : CoalgebraCat R} (i : X Y) :
              i.toCoalgEquiv = i.hom.toCoalgHom
              @[simp]
              theorem CategoryTheory.Iso.toCoalgEquiv_refl {R : Type u} [CommRing R] {X : CoalgebraCat R} :
              (CategoryTheory.Iso.refl X).toCoalgEquiv = CoalgEquiv.refl R X.toModuleCat
              @[simp]
              theorem CategoryTheory.Iso.toCoalgEquiv_symm {R : Type u} [CommRing R] {X Y : CoalgebraCat R} (e : X Y) :
              e.symm.toCoalgEquiv = e.toCoalgEquiv.symm
              @[simp]
              theorem CategoryTheory.Iso.toCoalgEquiv_trans {R : Type u} [CommRing R] {X Y Z : CoalgebraCat R} (e : X Y) (f : Y Z) :
              (e ≪≫ f).toCoalgEquiv = e.toCoalgEquiv.trans f.toCoalgEquiv