Monomorphisms and epimorphisms in Group
#
In this file, we prove monomorphisms in the category of groups are injective homomorphisms and epimorphisms are surjective homomorphisms.
Equations
- G.instAddGroupCarrier = G.str
Define X'
to be the set of all left cosets with an extra point at "infinity".
- fromCoset {A B : Grp} {f : A ⟶ B} : ↑(Set.range fun (x : ↑B) => x • ↑(Hom.hom f).range) → XWithInfinity f
- infinity {A B : Grp} {f : A ⟶ B} : XWithInfinity f
Instances For
instance
Grp.SurjectiveOfEpiAuxs.instSMulCarrierXWithInfinity
{A B : Grp}
(f : A ⟶ B)
:
SMul (↑B) (XWithInfinity f)
Equations
- One or more equations did not get rendered due to their size.
theorem
Grp.SurjectiveOfEpiAuxs.mul_smul
{A B : Grp}
(f : A ⟶ B)
(b b' : ↑B)
(x : XWithInfinity f)
:
theorem
Grp.SurjectiveOfEpiAuxs.fromCoset_eq_of_mem_range
{A B : Grp}
(f : A ⟶ B)
{b : ↑B}
(hb : b ∈ (Hom.hom f).range)
:
XWithInfinity.fromCoset ⟨b • ↑(Hom.hom f).range, ⋯⟩ = XWithInfinity.fromCoset ⟨↑(Hom.hom f).range, ⋯⟩
theorem
Grp.SurjectiveOfEpiAuxs.fromCoset_ne_of_nin_range
{A B : Grp}
(f : A ⟶ B)
{b : ↑B}
(hb : b ∉ (Hom.hom f).range)
:
XWithInfinity.fromCoset ⟨b • ↑(Hom.hom f).range, ⋯⟩ ≠ XWithInfinity.fromCoset ⟨↑(Hom.hom f).range, ⋯⟩
Let τ
be the permutation on X'
exchanging f.hom.range
and the point at infinity.
Equations
Instances For
Let g : B ⟶ S(X')
be defined as such that, for any β : B
, g(β)
is the function sending
point at infinity to point at infinity and sending coset y
to β • y
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The strategy is the following: assuming epi f
theorem
Grp.SurjectiveOfEpiAuxs.h_apply_fromCoset
{A B : Grp}
(f : A ⟶ B)
(x : ↑B)
:
((h f) x) (XWithInfinity.fromCoset ⟨↑(Hom.hom f).range, ⋯⟩) = XWithInfinity.fromCoset ⟨↑(Hom.hom f).range, ⋯⟩
theorem
Grp.SurjectiveOfEpiAuxs.comp_eq
{A B : Grp}
(f : A ⟶ B)
:
CategoryTheory.CategoryStruct.comp f (ofHom (g f)) = CategoryTheory.CategoryStruct.comp f (ofHom (h f))