Documentation

Mathlib.CategoryTheory.ConcreteCategory.EpiMono

Epi and mono in concrete categories #

In this file, we relate epimorphisms and monomorphisms in a concrete category C to surjective and injective morphisms, and we show that if C has strong epi mono factorizations and is such that forget C preserves both epi and mono, then any morphism in C can be factored in a functorial manner as a composition of a surjective morphism followed by an injective morphism.

theorem CategoryTheory.ConcreteCategory.mono_of_injective {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) (i : Function.Injective (hom f)) :

In any concrete category, injective morphisms are monomorphisms.

theorem CategoryTheory.ConcreteCategory.surjective_le_epimorphisms (C : Type u) [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] :
theorem CategoryTheory.ConcreteCategory.injective_le_monomorphisms (C : Type u) [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] :

A concrete category with strong epi mono factorizations and such that the forget functor preserves mono and epi admits functorial surjective/injective factorizations.

Equations
Instances For
    theorem CategoryTheory.ConcreteCategory.injective_of_mono_of_preservesPullback {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) [Mono f] [Limits.PreservesLimitsOfShape Limits.WalkingCospan (forget C)] :
    theorem CategoryTheory.ConcreteCategory.mono_iff_injective_of_preservesPullback {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) [Limits.PreservesLimitsOfShape Limits.WalkingCospan (forget C)] :
    theorem CategoryTheory.ConcreteCategory.epi_of_surjective {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) (s : Function.Surjective (hom f)) :
    Epi f

    In any concrete category, surjective morphisms are epimorphisms.

    theorem CategoryTheory.ConcreteCategory.surjective_of_epi_of_preservesPushout {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) [Epi f] [Limits.PreservesColimitsOfShape Limits.WalkingSpan (forget C)] :
    theorem CategoryTheory.ConcreteCategory.epi_iff_surjective_of_preservesPushout {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) [Limits.PreservesColimitsOfShape Limits.WalkingSpan (forget C)] :
    theorem CategoryTheory.ConcreteCategory.bijective_of_isIso {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] {X Y : C} (f : X Y) [IsIso f] :
    theorem CategoryTheory.ConcreteCategory.isIso_iff_bijective {C : Type u} [Category.{v, u} C] {FC : CCType u_1} {CC : CType w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [ConcreteCategory C FC] [(forget C).ReflectsIsomorphisms] {X Y : C} (f : X Y) :

    If the forgetful functor of a concrete category reflects isomorphisms, being an isomorphism is equivalent to being bijective.