The forgetful functor from ℤ-modules to additive commutative groups is an equivalence of categories.
TODO:
either use this equivalence to transport the monoidal structure from Module ℤ
to Ab
,
or, having constructed that monoidal structure directly, show this functor is monoidal.
instance
ModuleCat.forget₂_addCommGroup_full :
(CategoryTheory.forget₂ (ModuleCat ℤ) AddCommGrp).Full
The forgetful functor from ℤ
modules to AddCommGrp
is full.
instance
ModuleCat.forget₂_addCommGrp_essSurj :
(CategoryTheory.forget₂ (ModuleCat ℤ) AddCommGrp).EssSurj
The forgetful functor from ℤ
modules to AddCommGrp
is essentially surjective.
instance
ModuleCat.forget₂AddCommGroupIsEquivalence :
(CategoryTheory.forget₂ (ModuleCat ℤ) AddCommGrp).IsEquivalence