Monomorphisms in Module R
#
This file shows that an R
-linear map is a monomorphism in the category of R
-modules
if and only if it is injective, and similarly an epimorphism if and only if it is surjective.
theorem
ModuleCat.ker_eq_bot_of_mono
{R : Type u}
[Ring R]
{X Y : ModuleCat R}
(f : X ⟶ Y)
[CategoryTheory.Mono f]
:
LinearMap.ker f.hom = ⊥
theorem
ModuleCat.range_eq_top_of_epi
{R : Type u}
[Ring R]
{X Y : ModuleCat R}
(f : X ⟶ Y)
[CategoryTheory.Epi f]
:
LinearMap.range f.hom = ⊤
theorem
ModuleCat.mono_iff_ker_eq_bot
{R : Type u}
[Ring R]
{X Y : ModuleCat R}
(f : X ⟶ Y)
:
CategoryTheory.Mono f ↔ LinearMap.ker f.hom = ⊥
theorem
ModuleCat.mono_iff_injective
{R : Type u}
[Ring R]
{X Y : ModuleCat R}
(f : X ⟶ Y)
:
CategoryTheory.Mono f ↔ Function.Injective ⇑f.hom
theorem
ModuleCat.epi_iff_range_eq_top
{R : Type u}
[Ring R]
{X Y : ModuleCat R}
(f : X ⟶ Y)
:
CategoryTheory.Epi f ↔ LinearMap.range f.hom = ⊤
theorem
ModuleCat.epi_iff_surjective
{R : Type u}
[Ring R]
{X Y : ModuleCat R}
(f : X ⟶ Y)
:
CategoryTheory.Epi f ↔ Function.Surjective ⇑f.hom
def
ModuleCat.uniqueOfEpiZero
{R : Type u}
[Ring R]
{M : Type v}
[AddCommGroup M]
[Module R M]
(X : ModuleCat R)
[h : CategoryTheory.Epi 0]
:
Unique M
If the zero morphism is an epi then the codomain is trivial.
Equations
- X.uniqueOfEpiZero = uniqueOfSurjectiveZero ↑X ⋯
Instances For
instance
ModuleCat.mono_as_hom'_subtype
{R : Type u}
[Ring R]
{X : ModuleCat R}
(U : Submodule R ↑X)
:
CategoryTheory.Mono (ofHom U.subtype)
instance
ModuleCat.epi_as_hom''_mkQ
{R : Type u}
[Ring R]
{X : ModuleCat R}
(U : Submodule R ↑X)
:
CategoryTheory.Epi (ofHom U.mkQ)
instance
ModuleCat.forget_preservesEpimorphisms
{R : Type u}
[Ring R]
:
(CategoryTheory.forget (ModuleCat R)).PreservesEpimorphisms
instance
ModuleCat.forget_preservesMonomorphisms
{R : Type u}
[Ring R]
:
(CategoryTheory.forget (ModuleCat R)).PreservesMonomorphisms