Pullback of presheaves of modules #
Let F : C ⥤ D
be a functor, R : Dᵒᵖ ⥤ RingCat
and S : Cᵒᵖ ⥤ RingCat
be presheaves
of rings, and φ : S ⟶ F.op ⋙ R
be a morphism of presheaves of rings,
we introduce the pullback functor pullback : PresheafOfModules S ⥤ PresheafOfModules R
as the left adjoint of pushforward : PresheafOfModules R ⥤ PresheafOfModules S
.
The existence of this left adjoint functor is obtained under suitable universe assumptions.
The pullback functor PresheafOfModules S ⥤ PresheafOfModules R
induced by
a morphism of presheaves of rings S ⟶ F.op ⋙ R
, defined as the left adjoint
functor to the pushforward, when it exists.
Equations
- PresheafOfModules.pullback φ = (PresheafOfModules.pushforward φ).leftAdjoint
Instances For
Given a morphism of presheaves of rings S ⟶ F.op ⋙ R
, this is the adjunction
between associated pullback and pushforward functors on the categories
of presheaves of modules.
Equations
Instances For
Given a morphism of presheaves of rings φ : S ⟶ F.op ⋙ R
, this is the property
that the (partial) left adjoint functor of pushforward φ
is defined
on a certain object M : PresheafOfModules S
.
Equations
- PresheafOfModules.PullbackObjIsDefined φ = (PresheafOfModules.pushforward φ).LeftAdjointObjIsDefined
Instances For
Given a morphism of presheaves of rings φ : S ⟶ F.op ⋙ R
, where F : C ⥤ D
,
S : Cᵒᵖ ⥤ RingCat
, R : Dᵒᵖ ⥤ RingCat
and X : C
, the (partial) left adjoint
functor of pushforward φ
is defined on the object (free S).obj (yoneda.obj X)
:
this object shall be mapped to (free R).obj (yoneda.obj (F.obj X))
.
Equations
- One or more equations did not get rendered due to their size.