Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf.Pushforward

Pushforward of presheaves of modules #

If F : C ⥤ D, the precomposition F.op ⋙ _ induces a functor from presheaves over D to presheaves over C. When R : Dᵒᵖ ⥤ RingCat, we define the induced functor pushforward₀ : PresheafOfModules.{v} R ⥤ PresheafOfModules.{v} (F.op ⋙ R) on presheaves of modules.

In case we have a morphism of presheaves of rings S ⟶ F.op ⋙ R, we also construct a functor pushforward : PresheafOfModules.{v} R ⥤ PresheafOfModules.{v} S.

Implementation of pushforward₀.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The pushforward functor on presheaves of modules for a functor F : C ⥤ D and R : Dᵒᵖ ⥤ RingCat. On the underlying presheaves of abelian groups, it is induced by the precomposition with F.op.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For