Documentation

Mathlib.Algebra.Category.ModuleCat.Sheaf.PushforwardContinuous

Pushforward of sheaves of modules #

Assume that categories C and D are equipped with Grothendieck topologies, and that F : C ⥤ D is a continuous functor. Then, if φ : S ⟶ (F.sheafPushforwardContinuous RingCat.{u} J K).obj R is a morphism of sheaves of rings, we construct the pushforward functor pushforward φ : SheafOfModules.{v} R ⥤ SheafOfModules.{v} S.

The pushforward of sheaves of modules that is induced by a continuous functor F and a morphism of sheaves of rings φ : S ⟶ (F.sheafPushforwardContinuous RingCat J K).obj R.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    Given M : SheafOfModules R and X : D, this is the restriction of M over the sheaf of rings R.over X on the category Over X.

    Equations
    Instances For