Subobjects in the category of R
-modules #
We construct an explicit order isomorphism between the categorical subobjects of an R
-module M
and its submodules. This immediately implies that the category of R
-modules is well-powered.
The categorical subobjects of a module M
are in one-to-one correspondence with its
submodules.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
ModuleCat.toKernelSubobject
{R : Type u}
[Ring R]
{M N : ModuleCat R}
{f : M ⟶ N}
:
Bundle an element m : M
such that f m = 0
as a term of kernelSubobject f
.
Equations
Instances For
@[simp]
theorem
ModuleCat.toKernelSubobject_arrow
{R : Type u}
[Ring R]
{M N : ModuleCat R}
{f : M ⟶ N}
(x : ↥(LinearMap.ker (Hom.hom f)))
:
theorem
ModuleCat.cokernel_π_imageSubobject_ext
{R : Type u}
[Ring R]
{L M N : ModuleCat R}
(f : L ⟶ M)
[CategoryTheory.Limits.HasImage f]
(g : CategoryTheory.Subobject.underlying.obj (CategoryTheory.Limits.imageSubobject f) ⟶ N)
[CategoryTheory.Limits.HasCokernel g]
{x y : ↑N}
(l : ↑L)
(w :
x = y + (CategoryTheory.ConcreteCategory.hom g)
((CategoryTheory.ConcreteCategory.hom (CategoryTheory.Limits.factorThruImageSubobject f)) l))
:
An extensionality lemma showing that two elements of a cokernel by an image are equal if they differ by an element of the image.
The application is for homology: two elements in homology are equal if they differ by a boundary.