Ulift functor for ModuleCat #
In this file, we define the obvious functor ModuleCat.{v} R ⥤ ModuleCat.{max v v'} R and prove
it is exact, fully faithful and preverves projective and injective objects.
def
ModuleCat.uliftFunctor
(R : Type u)
[Ring R]
:
CategoryTheory.Functor (ModuleCat R) (ModuleCat R)
Universe lift functor for R-module.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ModuleCat.uliftFunctor_map
(R : Type u)
[Ring R]
{X✝ Y✝ : ModuleCat R}
(f : X✝ ⟶ Y✝)
:
(uliftFunctor.{v', v, u} R).map f = ofHom (↑ULift.moduleEquiv.symm ∘ₗ Hom.hom f ∘ₗ ↑ULift.moduleEquiv)
@[simp]
The universe lift functor for R-module is fully faithful.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The ULift functor on ModuleCat is compatible with the one defined on categories of types.
Equations
Instances For
@[simp]
theorem
ModuleCat.uliftFunctorForgetIso_inv_app
(R : Type u)
[Ring R]
(X : ModuleCat R)
(a✝ : ((uliftFunctor.{v', u_1, u} R).comp (CategoryTheory.forget (ModuleCat R))).obj X)
:
@[simp]
theorem
ModuleCat.uliftFunctorForgetIso_hom_app
(R : Type u)
[Ring R]
(X : ModuleCat R)
(a✝ : ((uliftFunctor.{v', u_1, u} R).comp (CategoryTheory.forget (ModuleCat R))).obj X)
:
theorem
ModuleCat.uliftFunctor_map_exact
(R : Type u)
[Ring R]
(S : CategoryTheory.ShortComplex (ModuleCat R))
(h : S.Exact)
:
(S.map (uliftFunctor.{u_1, v, u} R)).Exact
instance
ModuleCat.instPreservesProjectiveObjectsUliftFunctorOfSmall
(R : Type u)
[Ring R]
[Small.{v, u} R]
:
instance
ModuleCat.instPreservesInjectiveObjectsUliftFunctorOfSmall
(R : Type u)
[Ring R]
[Small.{v, u} R]
: