Documentation

Mathlib.Algebra.Homology.ShortComplex.ModuleCat

Homology and exactness of short complexes of modules #

In this file, the homology of a short complex S of abelian groups is identified with the quotient of LinearMap.ker S.g by the image of the morphism S.moduleCatToCycles : S.X₁ →ₗ[R] LinearMap.ker S.g induced by S.f.

@[simp]
theorem CategoryTheory.ShortComplex.moduleCatMk_X₁ {R : Type u} [Ring R] {X₁ : Type v} {X₂ : Type v} {X₃ : Type v} [AddCommGroup X₁] [AddCommGroup X₂] [AddCommGroup X₃] [Module R X₁] [Module R X₂] [Module R X₃] (f : X₁ →ₗ[R] X₂) (g : X₂ →ₗ[R] X₃) (hfg : g ∘ₗ f = 0) :
@[simp]
theorem CategoryTheory.ShortComplex.moduleCatMk_g {R : Type u} [Ring R] {X₁ : Type v} {X₂ : Type v} {X₃ : Type v} [AddCommGroup X₁] [AddCommGroup X₂] [AddCommGroup X₃] [Module R X₁] [Module R X₂] [Module R X₃] (f : X₁ →ₗ[R] X₂) (g : X₂ →ₗ[R] X₃) (hfg : g ∘ₗ f = 0) :
@[simp]
theorem CategoryTheory.ShortComplex.moduleCatMk_X₃ {R : Type u} [Ring R] {X₁ : Type v} {X₂ : Type v} {X₃ : Type v} [AddCommGroup X₁] [AddCommGroup X₂] [AddCommGroup X₃] [Module R X₁] [Module R X₂] [Module R X₃] (f : X₁ →ₗ[R] X₂) (g : X₂ →ₗ[R] X₃) (hfg : g ∘ₗ f = 0) :
@[simp]
theorem CategoryTheory.ShortComplex.moduleCatMk_X₂ {R : Type u} [Ring R] {X₁ : Type v} {X₂ : Type v} {X₃ : Type v} [AddCommGroup X₁] [AddCommGroup X₂] [AddCommGroup X₃] [Module R X₁] [Module R X₂] [Module R X₃] (f : X₁ →ₗ[R] X₂) (g : X₂ →ₗ[R] X₃) (hfg : g ∘ₗ f = 0) :
@[simp]
theorem CategoryTheory.ShortComplex.moduleCatMk_f {R : Type u} [Ring R] {X₁ : Type v} {X₂ : Type v} {X₃ : Type v} [AddCommGroup X₁] [AddCommGroup X₂] [AddCommGroup X₃] [Module R X₁] [Module R X₂] [Module R X₃] (f : X₁ →ₗ[R] X₂) (g : X₂ →ₗ[R] X₃) (hfg : g ∘ₗ f = 0) :
def CategoryTheory.ShortComplex.moduleCatMk {R : Type u} [Ring R] {X₁ : Type v} {X₂ : Type v} {X₃ : Type v} [AddCommGroup X₁] [AddCommGroup X₂] [AddCommGroup X₃] [Module R X₁] [Module R X₂] [Module R X₃] (f : X₁ →ₗ[R] X₂) (g : X₂ →ₗ[R] X₃) (hfg : g ∘ₗ f = 0) :

Constructor for short complexes in ModuleCat.{v} R taking as inputs linear maps f and g and the vanishing of their composition.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.ShortComplex.moduleCat_zero_apply {R : Type u} [Ring R] (S : CategoryTheory.ShortComplex (ModuleCat R)) (x : S.X₁) :
    S.g (S.f x) = 0
    theorem CategoryTheory.ShortComplex.moduleCat_exact_iff {R : Type u} [Ring R] (S : CategoryTheory.ShortComplex (ModuleCat R)) :
    CategoryTheory.ShortComplex.Exact S ∀ (x₂ : S.X₂), S.g x₂ = 0∃ (x₁ : S.X₁), S.f x₁ = x₂
    @[simp]
    theorem CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₂ {R : Type u} [Ring R] {X₁ : ModuleCat R} {X₂ : ModuleCat R} {X₃ : ModuleCat R} (f : X₁ X₂) (g : X₂ X₃) (hfg : LinearMap.range f LinearMap.ker g) :
    @[simp]
    theorem CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₃ {R : Type u} [Ring R] {X₁ : ModuleCat R} {X₂ : ModuleCat R} {X₃ : ModuleCat R} (f : X₁ X₂) (g : X₂ X₃) (hfg : LinearMap.range f LinearMap.ker g) :
    @[simp]
    theorem CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_f {R : Type u} [Ring R] {X₁ : ModuleCat R} {X₂ : ModuleCat R} {X₃ : ModuleCat R} (f : X₁ X₂) (g : X₂ X₃) (hfg : LinearMap.range f LinearMap.ker g) :
    @[simp]
    theorem CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_X₁ {R : Type u} [Ring R] {X₁ : ModuleCat R} {X₂ : ModuleCat R} {X₃ : ModuleCat R} (f : X₁ X₂) (g : X₂ X₃) (hfg : LinearMap.range f LinearMap.ker g) :
    @[simp]
    theorem CategoryTheory.ShortComplex.moduleCatMkOfKerLERange_g {R : Type u} [Ring R] {X₁ : ModuleCat R} {X₂ : ModuleCat R} {X₃ : ModuleCat R} (f : X₁ X₂) (g : X₂ X₃) (hfg : LinearMap.range f LinearMap.ker g) :
    def CategoryTheory.ShortComplex.moduleCatMkOfKerLERange {R : Type u} [Ring R] {X₁ : ModuleCat R} {X₂ : ModuleCat R} {X₃ : ModuleCat R} (f : X₁ X₂) (g : X₂ X₃) (hfg : LinearMap.range f LinearMap.ker g) :

    Constructor for short complexes in ModuleCat.{v} R taking as inputs morphisms f and g and the assumption LinearMap.range f ≤ LinearMap.ker g.

    Equations
    Instances For

      The canonical linear map S.X₁ →ₗ[R] LinearMap.ker S.g induced by S.f.

      Equations
      Instances For
        @[inline, reducible]

        The homology of S, defined as the quotient of the kernel of S.g by the image of S.moduleCatToCycles

        Equations
        Instances For

          The explicit left homology data of a short complex of modules that is given by a kernel and a quotient given by the LinearMap API.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Given a short complex S of modules, this is the isomorphism between the abstract S.cycles of the homology API and the more concrete description as LinearMap.ker S.g.

            Equations
            Instances For

              Given a short complex S of modules, this is the isomorphism between the abstract S.homology of the homology API and the more explicit quotient of LinearMap.ker S.g by the image of S.moduleCatToCycles : S.X₁ →ₗ[R] LinearMap.ker S.g.

              Equations
              Instances For