Documentation

Mathlib.Algebra.Homology.ShortComplex.ShortExact

Short exact short complexes #

A short complex S : ShortComplex C is short exact (S.ShortExact) when it is exact, S.f is a mono and S.g is an epi.

A short complex S is short exact if it is exact, S.f is a mono and S.g is an epi.

  • exact : S.Exact
  • mono_f : Mono S.f
  • epi_g : Epi S.g
Instances For
    theorem CategoryTheory.ShortComplex.ShortExact.mk' {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S : ShortComplex C} (h : S.Exact) :
    Mono S.fEpi S.gS.ShortExact
    theorem CategoryTheory.ShortComplex.shortExact_of_iso {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e : S₁ S₂) (h : S₁.ShortExact) :
    S₂.ShortExact
    theorem CategoryTheory.ShortComplex.shortExact_iff_of_iso {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S₁ S₂ : ShortComplex C} (e : S₁ S₂) :
    S₁.ShortExact S₂.ShortExact
    theorem CategoryTheory.ShortComplex.ShortExact.op {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S : ShortComplex C} (h : S.ShortExact) :
    S.op.ShortExact
    theorem CategoryTheory.ShortComplex.ShortExact.unop {C : Type u_1} [Category.{u_3, u_1} C] [Limits.HasZeroMorphisms C] {S : ShortComplex Cᵒᵖ} (h : S.ShortExact) :
    S.unop.ShortExact
    theorem CategoryTheory.ShortComplex.ShortExact.map {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] [Limits.HasZeroMorphisms C] [Limits.HasZeroMorphisms D] {S : ShortComplex C} (h : S.ShortExact) (F : Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [Mono (F.map S.f)] [Epi (F.map S.g)] :
    (S.map F).ShortExact
    theorem CategoryTheory.ShortComplex.isIso₂_of_shortExact_of_isIso₁₃ {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] [Balanced C] {S₁ S₂ : ShortComplex C} (φ : S₁ S₂) (h₁ : S₁.ShortExact) (h₂ : S₂.ShortExact) [IsIso φ.τ₁] [IsIso φ.τ₃] :
    IsIso φ.τ₂
    theorem CategoryTheory.ShortComplex.isIso₂_of_shortExact_of_isIso₁₃' {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] [Balanced C] {S₁ S₂ : ShortComplex C} (φ : S₁ S₂) (h₁ : S₁.ShortExact) (h₂ : S₂.ShortExact) :
    IsIso φ.τ₁IsIso φ.τ₃IsIso φ.τ₂

    If S is a short exact short complex in a balanced category, then S.X₁ is the kernel of S.g.

    Equations
    • hS.fIsKernel = .fIsKernel
    Instances For

      If S is a short exact short complex in a balanced category, then S.X₃ is the cokernel of S.f.

      Equations
      • hS.gIsCokernel = .gIsCokernel
      Instances For

        A split short complex is short exact.

        noncomputable def CategoryTheory.ShortComplex.ShortExact.splittingOfInjective {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {S : ShortComplex C} (hS : S.ShortExact) [Injective S.X₁] [Balanced C] :
        S.Splitting

        A choice of splitting for a short exact short complex S in a balanced category such that S.X₁ is injective.

        Equations
        Instances For
          noncomputable def CategoryTheory.ShortComplex.ShortExact.splittingOfProjective {C : Type u_1} [Category.{u_3, u_1} C] [Preadditive C] {S : ShortComplex C} (hS : S.ShortExact) [Projective S.X₃] [Balanced C] :
          S.Splitting

          A choice of splitting for a short exact short complex S in a balanced category such that S.X₃ is projective.

          Equations
          Instances For