Documentation

Mathlib.Algebra.Central.Basic

Central Algebras #

In this file, we prove some basic results about central algebras over a commutative ring.

Main results #

@[simp]
theorem Algebra.IsCentral.mem_center_iff (K : Type u) [CommSemiring K] {D : Type v} [Semiring D] [Algebra K D] [h : IsCentral K D] {x : D} :
x Subalgebra.center K D ∃ (a : K), x = (algebraMap K D) a
theorem Algebra.IsCentral.baseField_essentially_unique (k : Type u_1) (K : Type u_2) (D : Type u_3) [Field k] [Field K] [Ring D] [Nontrivial D] [Algebra k K] [Algebra K D] [Algebra k D] [IsScalarTower k K D] [IsCentral k D] :
theorem Algebra.IsCentral.of_algEquiv (K : Type u) [CommSemiring K] (D D' : Type v) [Semiring D] [Algebra K D] [h : IsCentral K D] [Semiring D'] [Algebra K D'] (e : D ≃ₐ[K] D') :

Opposite algebra of a central algebra is central. This instance combined with the coming IsSimpleRing instance for the opposite of central simple algebra will be an inverse for an element in BrauerGroup, find out more about this in Mathlib.Algebra.BrauerGroup.Basic.