Central Algebras #
In this file, we prove some basic results about central algebras over a commutative ring.
Main results #
Algebra.IsCentral.center_eq_bot
: the center of a central algebra overK
is equal toK
.Algebra.IsCentral.self
: a commutative ring is a central algebra over itself.Algebra.IsCentral.baseField_essentially_unique
: LetD/K/k
is a tower of scalars whereK
andk
are fields. IfD
is a nontrivial central algebra overk
,K
is isomorphic tok
.
@[simp]
theorem
Algebra.IsCentral.center_eq_bot
(K : Type u)
[CommSemiring K]
(D : Type v)
[Semiring D]
[Algebra K D]
[IsCentral K D]
:
Subalgebra.center K D = ⊥
theorem
Algebra.IsCentral.mem_center_iff
(K : Type u)
[CommSemiring K]
{D : Type v}
[Semiring D]
[Algebra K D]
[IsCentral K D]
{x : D}
:
x ∈ Subalgebra.center K D ↔ ∃ (a : K), x = (algebraMap K D) a
theorem
Algebra.IsCentral.baseField_essentially_unique
(k : Type u_1)
(K : Type u_2)
(D : Type u_3)
[Field k]
[Field K]
[Ring D]
[Nontrivial D]
[Algebra k K]
[Algebra K D]
[Algebra k D]
[IsScalarTower k K D]
[IsCentral k D]
:
Function.Bijective ⇑(algebraMap k K)