Documentation

Mathlib.Algebra.Central.End

Module.End R M is a central algebra #

This file shows that the algebra of endomorphisms on a free module is central.

theorem Module.End.mem_subsemiringCenter_iff {R : Type u_1} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [Free R M] {f : End R M} :
f Subsemiring.center (End R M) ∃ (α : R) ( : α Subsemiring.center R), f = smulLeft α
theorem Module.End.mem_subalgebraCenter_iff {R : Type u_1} {S : Type u_2} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [Free R M] [CommSemiring S] [Module S M] [SMulCommClass R S M] [Algebra S R] [IsScalarTower S R M] {f : End R M} :
f Subalgebra.center S (End R M) ∃ (α : R) ( : α Subalgebra.center S R), f = smulLeft α
instance Algebra.IsCentral.instEnd {R : Type u_1} {S : Type u_2} {M : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Free R M] [CommSemiring S] [Module S M] [SMulCommClass R S M] [Algebra S R] [IsScalarTower S R M] [IsCentral S R] :

The center of endomorphisms on a free module is trivial, in other words, it is a central algebra.