Documentation

Mathlib.Algebra.Homology.BifunctorFlip

Action of the flip of a bifunctor on homological complexes #

Given K₁ : HomologicalComplex C₁ c₁, K₂ : HomologicalComplex C₂ c₂, a bifunctor F : C₁ ⥤ C₂ ⥤ D, and a complex shape c with [TotalComplexShape c₁ c₂ c] and [TotalComplexShape c₂ c₁ c], we define an isomorphism mapBifunctor K₂ K₁ F.flip c ≅ mapBifunctor K₁ K₂ F c under the additional assumption [TotalComplexShapeSymmetry c₁ c₂ c].

theorem HomologicalComplex.hasMapBifunctor_flip_iff {C₁ : Type u_1} {C₂ : Type u_2} {D : Type u_3} [CategoryTheory.Category.{u_8, u_1} C₁] [CategoryTheory.Category.{u_7, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} D] {I₁ : Type u_4} {I₂ : Type u_5} {J : Type u_6} {c₁ : ComplexShape I₁} {c₂ : ComplexShape I₂} [CategoryTheory.Limits.HasZeroMorphisms C₁] [CategoryTheory.Limits.HasZeroMorphisms C₂] [CategoryTheory.Preadditive D] (K₁ : HomologicalComplex C₁ c₁) (K₂ : HomologicalComplex C₂ c₂) (F : CategoryTheory.Functor C₁ (CategoryTheory.Functor C₂ D)) [F.PreservesZeroMorphisms] [∀ (X₁ : C₁), (F.obj X₁).PreservesZeroMorphisms] (c : ComplexShape J) [TotalComplexShape c₁ c₂ c] [TotalComplexShape c₂ c₁ c] [TotalComplexShapeSymmetry c₁ c₂ c] :
K₂.HasMapBifunctor K₁ F.flip c K₁.HasMapBifunctor K₂ F c
instance HomologicalComplex.instHasMapBifunctorFlip {C₁ : Type u_1} {C₂ : Type u_2} {D : Type u_3} [CategoryTheory.Category.{u_8, u_1} C₁] [CategoryTheory.Category.{u_7, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} D] {I₁ : Type u_4} {I₂ : Type u_5} {J : Type u_6} {c₁ : ComplexShape I₁} {c₂ : ComplexShape I₂} [CategoryTheory.Limits.HasZeroMorphisms C₁] [CategoryTheory.Limits.HasZeroMorphisms C₂] [CategoryTheory.Preadditive D] (K₁ : HomologicalComplex C₁ c₁) (K₂ : HomologicalComplex C₂ c₂) (F : CategoryTheory.Functor C₁ (CategoryTheory.Functor C₂ D)) [F.PreservesZeroMorphisms] [∀ (X₁ : C₁), (F.obj X₁).PreservesZeroMorphisms] (c : ComplexShape J) [TotalComplexShape c₁ c₂ c] [TotalComplexShape c₂ c₁ c] [TotalComplexShapeSymmetry c₁ c₂ c] [K₁.HasMapBifunctor K₂ F c] :
K₂.HasMapBifunctor K₁ F.flip c
noncomputable def HomologicalComplex.mapBifunctorFlipIso {C₁ : Type u_1} {C₂ : Type u_2} {D : Type u_3} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} D] {I₁ : Type u_4} {I₂ : Type u_5} {J : Type u_6} {c₁ : ComplexShape I₁} {c₂ : ComplexShape I₂} [CategoryTheory.Limits.HasZeroMorphisms C₁] [CategoryTheory.Limits.HasZeroMorphisms C₂] [CategoryTheory.Preadditive D] (K₁ : HomologicalComplex C₁ c₁) (K₂ : HomologicalComplex C₂ c₂) (F : CategoryTheory.Functor C₁ (CategoryTheory.Functor C₂ D)) [F.PreservesZeroMorphisms] [∀ (X₁ : C₁), (F.obj X₁).PreservesZeroMorphisms] (c : ComplexShape J) [TotalComplexShape c₁ c₂ c] [TotalComplexShape c₂ c₁ c] [TotalComplexShapeSymmetry c₁ c₂ c] [DecidableEq J] [K₁.HasMapBifunctor K₂ F c] :
K₂.mapBifunctor K₁ F.flip c K₁.mapBifunctor K₂ F c

The canonical isomorphism mapBifunctor K₂ K₁ F.flip c ≅ mapBifunctor K₁ K₂ F c.

Equations
  • K₁.mapBifunctorFlipIso K₂ F c = (((F.mapBifunctorHomologicalComplex c₁ c₂).obj K₁).obj K₂).totalFlipIso c
Instances For
    theorem HomologicalComplex.mapBifunctorFlipIso_flip {C₁ : Type u_1} {C₂ : Type u_2} {D : Type u_3} [CategoryTheory.Category.{u_8, u_1} C₁] [CategoryTheory.Category.{u_9, u_2} C₂] [CategoryTheory.Category.{u_7, u_3} D] {I₁ : Type u_4} {I₂ : Type u_5} {J : Type u_6} {c₁ : ComplexShape I₁} {c₂ : ComplexShape I₂} [CategoryTheory.Limits.HasZeroMorphisms C₁] [CategoryTheory.Limits.HasZeroMorphisms C₂] [CategoryTheory.Preadditive D] (K₁ : HomologicalComplex C₁ c₁) (K₂ : HomologicalComplex C₂ c₂) (F : CategoryTheory.Functor C₁ (CategoryTheory.Functor C₂ D)) [F.PreservesZeroMorphisms] [∀ (X₁ : C₁), (F.obj X₁).PreservesZeroMorphisms] (c : ComplexShape J) [TotalComplexShape c₁ c₂ c] [TotalComplexShape c₂ c₁ c] [TotalComplexShapeSymmetry c₁ c₂ c] [DecidableEq J] [K₁.HasMapBifunctor K₂ F c] [TotalComplexShapeSymmetry c₂ c₁ c] [TotalComplexShapeSymmetrySymmetry c₁ c₂ c] :
    K₂.mapBifunctorFlipIso K₁ F.flip c = (K₁.mapBifunctorFlipIso K₂ F c).symm