Documentation

Mathlib.Algebra.Homology.DifferentialObject

Homological complexes are differential graded objects. #

We verify that a HomologicalComplex indexed by an AddCommGroup is essentially the same thing as a differential graded object.

This equivalence is probably not particularly useful in practice; it's here to check that definitions match up as expected.

We first prove some results about differential graded objects.

Porting note: after the port, move these to their own file.

@[reducible, inline]
abbrev CategoryTheory.DifferentialObject.objEqToHom {β : Type u_1} [AddCommGroup β] {b : β} {V : Type u_2} [Category.{u_3, u_2} V] [Limits.HasZeroMorphisms V] (X : DifferentialObject (GradedObjectWithShift b V)) {i j : β} (h : i = j) :
X.obj i X.obj j

Since eqToHom only preserves the fact that X.X i = X.X j but not i = j, this definition is used to aid the simplifier.

Equations
Instances For
    @[simp]
    @[simp]
    theorem CategoryTheory.DifferentialObject.objEqToHom_d {β : Type u_1} [AddCommGroup β] {b : β} {V : Type u_2} [Category.{u_3, u_2} V] [Limits.HasZeroMorphisms V] (X : DifferentialObject (GradedObjectWithShift b V)) {x y : β} (h : x = y) :
    CategoryStruct.comp (X.objEqToHom h) (X.d y) = CategoryStruct.comp (X.d x) (X.objEqToHom )
    @[simp]
    theorem CategoryTheory.DifferentialObject.objEqToHom_d_assoc {β : Type u_1} [AddCommGroup β] {b : β} {V : Type u_2} [Category.{u_3, u_2} V] [Limits.HasZeroMorphisms V] (X : DifferentialObject (GradedObjectWithShift b V)) {x y : β} (h : x = y) {Z : V} (h✝ : (CategoryTheory.shiftFunctor (GradedObjectWithShift b V) 1).obj X.obj y Z) :
    CategoryStruct.comp (X.objEqToHom h) (CategoryStruct.comp (X.d y) h✝) = CategoryStruct.comp (X.d x) (CategoryStruct.comp (X.objEqToHom ) h✝)
    @[simp]
    theorem CategoryTheory.DifferentialObject.d_squared_apply {β : Type u_1} [AddCommGroup β] {b : β} {V : Type u_2} [Category.{u_3, u_2} V] [Limits.HasZeroMorphisms V] (X : DifferentialObject (GradedObjectWithShift b V)) {x : β} :
    CategoryStruct.comp (X.d x) (X.d ((fun (b_1 : β) => b_1 + { as := 1 }.as b) x)) = 0
    @[simp]
    theorem CategoryTheory.DifferentialObject.eqToHom_f' {β : Type u_1} [AddCommGroup β] {b : β} {V : Type u_2} [Category.{u_3, u_2} V] [Limits.HasZeroMorphisms V] {X Y : DifferentialObject (GradedObjectWithShift b V)} (f : X Y) {x y : β} (h : x = y) :
    CategoryStruct.comp (X.objEqToHom h) (f.f y) = CategoryStruct.comp (f.f x) (Y.objEqToHom h)
    @[simp]
    theorem CategoryTheory.DifferentialObject.eqToHom_f'_assoc {β : Type u_1} [AddCommGroup β] {b : β} {V : Type u_2} [Category.{u_3, u_2} V] [Limits.HasZeroMorphisms V] {X Y : DifferentialObject (GradedObjectWithShift b V)} (f : X Y) {x y : β} (h : x = y) {Z : V} (h✝ : Y.obj y Z) :
    CategoryStruct.comp (X.objEqToHom h) (CategoryStruct.comp (f.f y) h✝) = CategoryStruct.comp (f.f x) (CategoryStruct.comp (Y.objEqToHom h) h✝)

    The functor from differential graded objects to homological complexes.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The functor from homological complexes to differential graded objects.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem HomologicalComplex.homologicalComplexToDGO_obj_d {β : Type u_1} [AddCommGroup β] (b : β) (V : Type u_2) [CategoryTheory.Category.{u_3, u_2} V] [CategoryTheory.Limits.HasZeroMorphisms V] (X : HomologicalComplex V (ComplexShape.up' b)) (i : β) :
        ((homologicalComplexToDGO b V).obj X).d i = X.d i ((fun (b_1 : β) => b_1 + { as := 1 }.as b) i)

        The counit isomorphism for dgoEquivHomologicalComplex.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The category of differential graded objects in V is equivalent to the category of homological complexes in V.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For