Documentation

Mathlib.Algebra.Homology.Embedding.ExtendHomotopy

The extension functor on the homotopy categories #

Given an embedding of complex shapes e : c.Embedding c' and a preadditive category C, we define a fully faithful functor e.extendHomotopyFunctor C : HomotopyCategory C c ⥤ HomotopyCategory C c'.

Auxiliary definition for Homotopy.extend

Equations
Instances For
    noncomputable def Homotopy.extend.hom {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} (e : c.Embedding c') (φ : (i j : ι) → K.X i L.X j) (i' j' : ι') :
    (K.extend e).X i' (L.extend e).X j'

    Auxiliary defnition for Homotopy.extend.

    Equations
    Instances For
      theorem Homotopy.extend.hom_eq_zero₁ {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} (e : c.Embedding c') (φ : (i j : ι) → K.X i L.X j) (i' j' : ι') (hi' : ∀ (i : ι), e.f i i') :
      hom e φ i' j' = 0
      theorem Homotopy.extend.hom_eq_zero₂ {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} (e : c.Embedding c') (φ : (i j : ι) → K.X i L.X j) (i' j' : ι') (hj' : ∀ (j : ι), e.f j j') :
      hom e φ i' j' = 0
      theorem Homotopy.extend.hom_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} (e : c.Embedding c') (φ : (i j : ι) → K.X i L.X j) {i' j' : ι'} {i j : ι} (hi : e.f i = i') (hj : e.f j = j') :

      If e : c.Embedding c' is an embedding of complex shapes and h is a homotopy between morphisms of homological complexes of shape c, this is the corresponding homotopy between the extension of these morphisms.

      Equations
      Instances For
        theorem Homotopy.extend_hom_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} {f g : K L} (h : Homotopy f g) (e : c.Embedding c') [e.IsRelIff] {i' j' : ι'} {i j : ι} (hi : e.f i = i') (hj : e.f j = j') :

        If e : c.Embedding c' is an embedding of complex shapes, f and g are morphism between cochain complexes of shape c, and h is an homotopy between the extensions extendMap f e and extendMap g e, then this is the corresponding homotopy between f and g.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Homotopy.ofExtend_extend {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] {K L : HomologicalComplex C c} {f g : K L} (h : Homotopy f g) (e : c.Embedding c') [e.IsRelIff] :
          (h.extend e).ofExtend = h

          If e : c.Embedding c' is an embedding of complex shapes, f and g are morphism between cochain complexes of shape c, this is the bijection between homotopies between f and g, and homotopies between the extensions extendMap f e and extendMap g e.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Given an embedding e : c.Embedding c' of complex shapes, this is the functor HomotopyCategory C c ⥤ HomotopyCategory C c' which extend complexes along e.

            Equations
            Instances For

              Given an embedding e : c.Embedding c' of complex shapes, the functor e.extendHomotopyFunctor C on homotopy categories is induced by the functor e.extendFunctor C on homological complexes.

              Equations
              Instances For