The homology of a restriction #
Under extremely favourable circumstrnaces, we may relate the
homology of K : HomologicalComplex C c'
in degree j'
and
that of K.restriction e
id a degree j
when e : Embedding c c'
is an embedding of complex shapes. See restriction.sc'Iso
and restriction.hasHomology
.
def
HomologicalComplex.restriction.sc'Iso
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
(K.restriction e).sc' i j k ≅ K.sc' i' j' k'
The isomorphism (K.restriction e).sc' i j k ≅ K.sc' i' j' k'
when
e
is an embedding of complex shapes, i'
, j
, k
' are the respective
images of i
, j
, k
by e.f
, j
is the previous index of i
, etc.
Equations
- HomologicalComplex.restriction.sc'Iso K e i j k hi' hj' hk' hi'' hk'' = CategoryTheory.ShortComplex.isoMk (K.restrictionXIso e hi') (K.restrictionXIso e hj') (K.restrictionXIso e hk') ⋯ ⋯
Instances For
@[simp]
theorem
HomologicalComplex.restriction.sc'Iso_inv_τ₃
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
@[simp]
theorem
HomologicalComplex.restriction.sc'Iso_hom_τ₃
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
@[simp]
theorem
HomologicalComplex.restriction.sc'Iso_hom_τ₂
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
@[simp]
theorem
HomologicalComplex.restriction.sc'Iso_inv_τ₂
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
@[simp]
theorem
HomologicalComplex.restriction.sc'Iso_hom_τ₁
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
@[simp]
theorem
HomologicalComplex.restriction.sc'Iso_inv_τ₁
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
:
theorem
HomologicalComplex.restriction.hasHomology
{ι : Type u_1}
{ι' : Type u_2}
{c : ComplexShape ι}
{c' : ComplexShape ι'}
{C : Type u_3}
[CategoryTheory.Category.{u_4, u_3} C]
[CategoryTheory.Limits.HasZeroMorphisms C]
(K : HomologicalComplex C c')
(e : c.Embedding c')
[e.IsRelIff]
(i j k : ι)
(hi : c.prev j = i)
(hk : c.next j = k)
{i' j' k' : ι'}
(hi' : e.f i = i')
(hj' : e.f j = j')
(hk' : e.f k = k')
(hi'' : c'.prev j' = i')
(hk'' : c'.next j' = k')
[K.HasHomology j']
:
(K.restriction e).HasHomology j