Documentation

Mathlib.Algebra.Homology.ShortComplex.QuasiIso

Quasi-isomorphisms of short complexes #

This file introduces the typeclass QuasiIso φ for a morphism φ : S₁ ⟶ S₂ of short complexes (which have homology): the condition is that the induced morphism homologyMap φ in homology is an isomorphism.

class CategoryTheory.ShortComplex.QuasiIso {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) :

A morphism φ : S₁ ⟶ S₂ of short complexes that have homology is a quasi-isomorphism if the induced map homologyMap φ : S₁.homology ⟶ S₂.homology is an isomorphism.

Instances
    Equations
    • =
    theorem CategoryTheory.ShortComplex.quasiIso_of_arrow_mk_iso {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ S₃ S₄ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] [S₃.HasHomology] [S₄.HasHomology] (φ : S₁ S₂) (φ' : S₃ S₄) (e : CategoryTheory.Arrow.mk φ CategoryTheory.Arrow.mk φ') [hφ : CategoryTheory.ShortComplex.QuasiIso φ] :
    theorem CategoryTheory.ShortComplex.LeftHomologyMapData.quasiIso_iff {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] {φ : S₁ S₂} {h₁ : S₁.LeftHomologyData} {h₂ : S₂.LeftHomologyData} (γ : CategoryTheory.ShortComplex.LeftHomologyMapData φ h₁ h₂) :
    theorem CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_iff {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] {φ : S₁ S₂} {h₁ : S₁.RightHomologyData} {h₂ : S₂.RightHomologyData} (γ : CategoryTheory.ShortComplex.RightHomologyMapData φ h₁ h₂) :
    theorem CategoryTheory.ShortComplex.quasiIso_iff_isIso_leftHomologyMap' {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) (h₁ : S₁.LeftHomologyData) (h₂ : S₂.LeftHomologyData) :
    theorem CategoryTheory.ShortComplex.quasiIso_iff_isIso_rightHomologyMap' {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) (h₁ : S₁.RightHomologyData) (h₂ : S₂.RightHomologyData) :
    theorem CategoryTheory.ShortComplex.quasiIso_iff_isIso_liftCycles {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) (hf₁ : S₁.f = 0) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) :
    theorem CategoryTheory.ShortComplex.quasiIso_iff_isIso_descOpcycles {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) (hg₂ : S₂.g = 0) :