Relation between pullback/pushout squares and kernel/cokernel sequences #
This file is the bundled counterpart of Algebra.Homology.CommSq
.
The same results are obtained here for squares sq : Square C
where
C
is an additive category.
@[reducible, inline]
noncomputable abbrev
CategoryTheory.Square.cokernelCofork
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
(sq : Square C)
[Limits.HasBinaryBiproduct sq.X₂ sq.X₃]
:
Limits.CokernelCofork (Limits.biprod.lift sq.f₁₂ (-sq.f₁₃))
The cokernel cofork attached to a commutative square in a preadditive category.
Equations
- sq.cokernelCofork = CategoryTheory.Limits.CokernelCofork.ofπ (CategoryTheory.Limits.biprod.desc sq.f₂₄ sq.f₃₄) ⋯
Instances For
noncomputable def
CategoryTheory.Square.isPushoutEquivIsColimitCokernelCofork
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
(sq : Square C)
[Limits.HasBinaryBiproduct sq.X₂ sq.X₃]
:
sq.IsPushout ≃ Limits.IsColimit sq.cokernelCofork
A commutative square in a preadditive category is a pushout square iff
the corresponding diagram X₁ ⟶ X₂ ⊞ X₃ ⟶ X₄ ⟶ 0
makes X₄
a cokernel.
Equations
- sq.isPushoutEquivIsColimitCokernelCofork = { toFun := fun (h : sq.IsPushout) => h.isColimit, invFun := ⋯, left_inv := ⋯, right_inv := ⋯ }.trans ⋯.isColimitEquivIsColimitCokernelCofork
Instances For
noncomputable def
CategoryTheory.Square.IsPushout.isColimitCokernelCofork
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
{sq : Square C}
[Limits.HasBinaryBiproduct sq.X₂ sq.X₃]
(h : sq.IsPushout)
:
Limits.IsColimit sq.cokernelCofork
The colimit cokernel cofork attached to a pushout square.
Equations
- h.isColimitCokernelCofork = ⋯.isColimitEquivIsColimitCokernelCofork h.isColimit
Instances For
@[reducible, inline]
noncomputable abbrev
CategoryTheory.Square.kernelFork
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
(sq : Square C)
[Limits.HasBinaryBiproduct sq.X₂ sq.X₃]
:
Limits.KernelFork (Limits.biprod.desc sq.f₂₄ (-sq.f₃₄))
The kernel fork attached to a commutative square in a preadditive category.
Equations
- sq.kernelFork = CategoryTheory.Limits.KernelFork.ofι (CategoryTheory.Limits.biprod.lift sq.f₁₂ sq.f₁₃) ⋯
Instances For
noncomputable def
CategoryTheory.Square.isPullbackEquivIsLimitKernelFork
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
(sq : Square C)
[Limits.HasBinaryBiproduct sq.X₂ sq.X₃]
:
sq.IsPullback ≃ Limits.IsLimit sq.kernelFork
A commutative square in a preadditive category is a pullback square iff
the corresponding diagram 0 ⟶ X₁ ⟶ X₂ ⊞ X₃ ⟶ X₄ ⟶ 0
makes X₁
a kernel.
Equations
- sq.isPullbackEquivIsLimitKernelFork = { toFun := fun (h : sq.IsPullback) => h.isLimit, invFun := ⋯, left_inv := ⋯, right_inv := ⋯ }.trans ⋯.isLimitEquivIsLimitKernelFork
Instances For
noncomputable def
CategoryTheory.Square.IsPullback.isLimitKernelFork
{C : Type u_1}
[Category.{u_2, u_1} C]
[Preadditive C]
{sq : Square C}
[Limits.HasBinaryBiproduct sq.X₂ sq.X₃]
(h : sq.IsPullback)
:
Limits.IsLimit sq.kernelFork
The limit kernel fork attached to a pullback square.
Equations
- h.isLimitKernelFork = ⋯.isLimitEquivIsLimitKernelFork h.isLimit